# **Supplementary Information**

# CONTENT

## **Supplementary Materials and Methods**

Sequencing of strain *Pseudomonas* sp. CMR5c Bioinformatics Injection assay with *Galleria mellonella* Feeding assay with *Spodoptera littoralis* Bacterial colonization of *Spodoptera littoralis* larvae Identification of biocontrol activity In vitro inhibition of plant pathogens Statistics

## **Supplementary Results**

Phylogeny of sequenced isolates Plant-beneficial effects and antifungal compounds

## **Supplementary Figures**

Figure S1. Phylogenetic tree of the *P. fluorescens* group based on the four-gene MLSA

- scheme of Mulet et al (2012)
- Figure S2. Oral activity against Spodoptera littoralis larvae
- Figure S3. In-vitro inhibition of Pythium ultimum and Fusarium oxysporum
- Figure S4. *P. protegens* CHA0 deficient for a specific phospholipase C, but not for *aprX* or the *reb* cluster is reduced in oral activity against insect larvae

Figure S5. Repetition of experiments depicted in Figure 4 and Supplementary Figure S4.

## **Supplementary Tables**

 Table S1. Full list of gene clusters associated with biocontrol or insecticidal activity for all

strains included in Figure 1. Supplementary to Figure 2.

- Table S2. Strains, plasmids and primers used in this study
- **Table S3.** Mean amino acid identities (AAI) and Genome-to-Genome Distance Calculator(GGDC) values for all genomes related to *P. brassicacearum, P. kilonensis* and *P. thivervalensis*.

Table S4. Oral activity against Plutella xylostella larvae (repetition of experiment depicted in

Figure 3 and Table 2)

**Table S5**. Biocontrol activity against *Pythium ultimum* on cucumber plants

 Table S6.
 Genomic features

Table S7. Genes specific to insecticidal strains

## References

# **Supplementary Materials and Methods**

#### Sequencing of strain Pseudomonas sp. CMR5c

Paired-end sequence reads of genomic DNA of *Pseudomonas* CMR5c were generated using the Illumina HiSeq2500 system. The *de novo* assembly analysis was performed using the "*de novo* assembly" option of the CLC Genomics Workbench version 7.0.4. The scaffolding analysis was performed using the SSPACE Premium scaffolder version 2.3 (Boetzer et al 2011). Automated gap closure analysis was done using GapFiller version 1.10 (Boetzer and Pirovano 2012). No further manual assembly was performed.

#### Bioinformatics

Housekeeping genes of sequenced strains were collected from the annotated genomes, cropped to the size of the fragments used for phylogeny and concatenated according to Mulet et al (2012). Alignments were done using Muscle in MEGA v6.0, and a phylogenetic analysis was done with the maximum likelihood method.

Pairwise average amino acid identities (AAI) were calculated in EDGAR (Blom et al 2009). GGDC values are calculated using the Genome-to-Genome Distance Calculator Version 2 and reported according to formula 2, best suited when including draft genomes (Auch et al 2010, Meier-Kolthoff et al 2013).

#### Injection assay with Galleria mellonella

Washed bacterial cells (10 µl) suspended in 0.9% sterile NaCl solution and adjusted to the desired concentration were injected into the hemolymph of ultimate-instar *Galleria mellonella* larvae (Hebeisen Fishing, Zürich, Switzerland) using a 1-ml syringe with a 27-gauge needle in a repetitive dispensing Tridak Stepper (Intertronic, Oxfordshire, UK). Sterile 0.9% NaCl solution served as control. Three times ten larvae were injected per treatment and kept in Petri dishes at 24°C in the dark. Larvae were scored as live or dead regularly over two days. Mortality was defined as the inability of larvae to react to poking.

#### Feeding assay with Spodoptera littoralis

Food pellet assays with *Spodoptera littoralis* were performed as described by Ruffner et al. (2013). Briefly, third instar larvae of *S. littoralis* (Syngenta Crop Protection AG, Stein) were exposed to modified insect diet (Gupta et al 2005, Ruffner et al 2013) inoculated with  $4 \times 10^7$  colony forming units per food pellet. For control treatments, pellets were treated with  $10 \mu l$  sterile 0.9% NaCl solution. Instead of using petri dishes (Ruffner et al 2013), pellets were

placed into Greiner six-well plates and presented to one larva per well. Five plates were prepared per bacterial strain (30 larvae per treatment). Larvae were incubated in the dark at room temperature and were fed with fresh, bacteria free diet when necessary. Survival rates were recorded daily. Larvae were considered to be dead when they did not react to repeated poking.

#### Bacterial colonization of Spodoptera littoralis larvae

Bacteria were extracted from surviving larvae at the end of the experiment. Larvae were surface-disinfested for 30 s in 70% ethanol, rinsed with sterile water and homogenized in 10 ml sterile 0.9% saline solution with a Polytron PT-DA 2112 blender (Kinematica, Littau, Switzerland). Serial dilutions of the resulting homogenate were then plated onto King's B agar (King et al 1954) supplemented with ampicillin (40  $\mu$ g ml<sup>-1</sup>), chloramphenicol (13  $\mu$ g ml<sup>-1</sup>), and cycloheximide (100  $\mu$ g ml<sup>-1</sup>) to select for the bacterial strains fed to the larvae. Plates for bacterial quantification were incubated for two days at 27°C before colony counting.

#### Identification of biocontrol activity

Biocontrol of *Pythium* damping-off of cucumber was assessed for each strain adapted after Sharifi-Tehrani et al (1998). Aliquots of 200  $\mu$ l of over-night cultures of bacteria grown in LB were plated on King's B agar (King et al 1954) and incubated for 24 h at 24°C. Bacteria were then scraped off the plate and washed in sterile distilled H<sub>2</sub>O. Each bacterial strain was added to five pots filled with 120 g of TREF go PP7000 plant substrate (Gvz Rossat AG, Otelfingen, Switzerland) to a final concentration of 5 × 10<sup>7</sup> cfu per g soil. Each pot was inoculated with 0.3 g of *Pythium* inoculum grown on millet seeds and planted with three pre-germinated cucumber seeds. Pots were incubated at 70% humidity for 16 h with light (15 klux) at 22°C, followed by an 8-h dark period at 20°C. After 12 d, shoot weight per pot was recorded. Biocontrol activity was calculated after Rezzonico et al (2007) as:

 $(1 - ((W_c - W_I)/(W_c - W_P))) \times 100$ 

using shoot weight obtained in the control with neither bacterial nor pathogen inoculum  $(W_c)$ , in the unprotected control with the pathogen alone  $(W_P)$  and in presence of the tested bacterial strain and the pathogen  $(W_I)$ . A total of seven experiments was conducted and each strain was tested at least twice. The model strain *P. protegens* CHA0 was included as a reference in each experiment.

#### In vitro inhibition of plant pathogens

*F. oxysporum* Schlecht. f. sp. *radicis-lycopersici* strain Forl22 (Forl) and *P. ultimum* Trow strain 67-1 (Pu) were cultivated on malt agar as described by Sharifi-Tehrani et al (1998). In vitro inhibition of Pu and Forl was assessed on malt agar (MA) and GCY (Tambong and Höfte 2001) plates. Mycelial plugs were placed at the center of the plates either one day before (for Pu) or one day after (for Forl) adding the bacteria. Bacterial strains were grown overnight in LB. Cells were washed with sterile distilled  $H_2O$  and a suspension of an  $OD_{600}$  of 1.0 was prepared. The suspension was streaked out in a square around the mycelial plug using an inoculation loop. Plates were inoculated at 24°C. The mycelial diameter was measured after 2 d for Pu and after 8 d for Forl. Each strain was tested twice on each medium with four replicates.

### Statistics

Data analysis was performed in R version 3.1.1. (http://www.r-project.org). Mortality rates of the insect toxicity tests with wild-type strains and data on in-vitro inhibition of plant pathogens were analysed by multiple comparisons using Kruskal-Wallis adjusted by Bonferroni-Holm. LT<sub>50</sub> values were estimated based on the generalized linear model using the MASS package in R (Venables and Ripley 2002). To test for significant differences in insect toxicity tests between *P. protegens* CHA0 and its mutant strains the Log-Rank test of the Survival package of R was used. To identify strains with significant biocontrol activity, a t-test was performed testing each strain against the respective unprotected control with pathogen alone.

## **Supplementary Results**

#### Phylogeny of sequenced isolates

Many strains of the *Pseudomonas fluorescens* group were classified years ago, and their taxonomic status was not updated since then. We performed a comparative systematic study to correctly assign the isolates that were sequenced in this study to the phylogeny within the genus *Pseudomonas* (Mulet et al 2012). A recent study (Gomila et al 2015) has performed similar work with other published genomes, some of which were also included in our study.

The core genome tree (Figure 1), practically a core genome Multilocus Sequence Analysis (MLSA) (Blom et al 2009), confirmed the phylogenetic position of a range of isolates that we included in sequencing. For publicly available genomes, the position is corresponding to the study of Gomila et al (2015), whereas we confirmed the position of some isolates that already had a unconfirmed status in phylogeny. The phylogenetic position of the isolates could now be confirmed using digital DNA-DNA hybridization (Supplementary Table S3)(Meier-Kolthoff et al 2014), average amino acid identities (Supplementary Table S3) of the core genome (Konstantinidis et al 2006) and the four-gene MLSA (Supplementary Figure S1) (Gomila et al 2015, Mulet et al 2012).

Five strains that were sequenced in this study are now included in *P. protegens* (Ramette et al 2011): strains CHA0<sup>T</sup>, PGNR1, BRIP, K94.41 and PF, while two isolates (PCL1391 and CD), already included in *P. chlororaphis* (Chin-A-Woeng et al 1998, Ruffner et al 2015), can now be assigned to the respective subspecies as we also included three of the subspecies type strains in the genome analysis. Strain PCL1391 belongs to *P. chlororaphis* subsp. *piscium*, whereas strain CD is a *P. chlororaphis* subsp. *aureofaciens*. By searching the annotations for genes coding for the differential phenotypes as described in literature (Burr et al 2010, Peix et al 2007), we could confirm these designations.

Using the data generated in this study, strain TM1A3 is confirmed as member of the species *P. brassicacearum* by its relationship to type strain *P. brassicacearum* subsp. *brassicacearum* NFM421<sup>T</sup>, but this strain cannot yet be assigned to a subspecies, as MLSA or genomic data for the other subspecies are missing. Based on AAI and DNA-DNA hybridization strains P12 and PITR2 are closely related to the type strains of *P. kilonensis and P. thivervalensis*, respectively, which were also sequenced in this study and can thus be assigned to these species (Supplementary Table S3).

We cannot assign a species name to the other species. Three strains (Q12-87, P97.38 and Pf153) belong to the *P. corrugata* subgroup, while *Pseudomonas* sp. MIACH is included in

the *P. fluorescens* subgroup (Supplementary Figure 1). This is in agreement with the core genome tree (Figure 1). *Pseudomonas* sp. P1.8 is, based on the MLSA, belonging to the *P. jessenii* subgroup, while *Pseudomonas* sp. P1.31 is a member of the *P. koreensis* subgroup. The closest related genome-sequenced strains included in Figure 1 were also assigned to the corresponding subgroups (Gomila et al 2015). However, none of these can be assigned to a known *Pseudomonas* species, indicating that these strains represent novel species within the genus.

#### Plant-beneficial effects and antifungal compounds

In a pot experiment all strains were tested for their biocontrol activity against the oomycete pathogen *Pythium ultimum* on cucumber roots. In all sub-clades, several strains were found to display effective plant protection whereas others had no significant biocontrol activity. Thus, biocontrol activity seems to be phylogenetically less predictable than insecticidal activity. The presence of biosynthetic genes for the two important antifungal metabolites 2,4-diacetylphloroglucinol (DAPG) (*phl*) and phenazine (Phz) (*phz*) was not necessarily linked to *P. ultimum* biocontrol since strains *P. chlororaphis* subsp. *aureofaciens* LMG 5004 (*phz*<sup>+</sup>), *P. kilonensis* DSM 13647<sup>T</sup> (*phl*<sup>+</sup>), and *Pseudomonas* sp. CMR5c (*phz*<sup>+</sup>, *phl*<sup>+</sup>) did not provide any protection against the root pathogen (Figure 2). In contrast, all *P. protegens* strains displayed significant biocontrol activity (Keel et al 1996, Perneel et al 2007) did not protect cucumber plants against *P. ultimum* might be explained by the different experimental conditions used in this study, such as the plant as well as the pathogen species or the substrate.

Similar to the results on insecticidal activity, no connection between the original habitat and the degree of plant protection was observed. Thus, also the strains *P. chlororaphis* subsp. *piscium* DSM 21509<sup>T</sup> or *P. protegens* BRIP recently isolated from fish and cyclops, respectively, provided significant biocontrol activity (Supplementary Table S5). In general, antifungal metabolite production appears to be less an adaptation to life on roots than a universal defence mechanism against microbial competitors. For instance the fish isolate *P. chlororaphis* subsp. *piscium* DSM 21509<sup>T</sup> was also found to have *in vitro* activity towards the oomycete fish pathogen *Saprolegnia parasitica*, which causes significant losses in fish hatcheries and breeding units (data not shown). Thus, an isolate from a certain habitat could also be used as biocontrol agent in a completely different ecological context.

7

A subset of 15 strains of sub-clade 1 and 2 was further tested for *in vitro* inhibition of mycelial growth of *P. ultimum* and a second plant pathogen, *Fusarium oxysporum*, on MA and GCY medium, favouring the production of DAPG or Phz, respectively (Figure 2, Supplementary Figure S3). Throughout both phylogenetic groups, all strains except P1.8 were found to exhibit *in vitro* pathogen inhibition with DAPG and Phz producing strains performing best on media conducive to metabolite biosynthesis.

# **Supplementary Figures**



**Supplementary Figure S1**: Maximum Likelihood phylogenetic tree of strains belonging to the *P*. *fluorescens* group based on the four-gene (16S rRNA, *gyrB*, *rpoB* and *rpoD*) MLSA scheme of Mulet et al (2012). Strains investigated in this study are indicated in bold. Bootstrap values over 50% are indicated in the tree.



Supplementary Figure S2. Sub-clade 1 strains cause lethal oral infections in *Spodoptera littoralis* larvae while sub-clade 2 strains, although some of them are able to persist in the insect, do not kill the larvae.

Survival (A) and colonization (B) rates of *S. littoralis* larvae upon feeding on artificial diet inoculated with either  $4 \times 10^7$  cells of the indicated *Pseudomonas* strains or 0.9% NaCl (control). A) Survival of larvae after 5 d. Bars show means (± se) of five replicates with six larvae each. Asterisks indicate bacterial treatments that were significantly different from the control based on multiple comparisons by Kruskal-Wallis adjusted by Bonferroni-Holm (p ≤ 0.05). Each strain was tested in an independent second experiment with highly similar results.

B) Some strains of sub-clade 2 are able to persist in *S. littoralis* larvae whereas numbers of others strongly decline within a few days. To get an estimate of the capacity of inoculants to persist and multiply within *S. littoralis* larvae upon ingestion, six surviving larvae were extracted and colonization levels were assessed by plating serial dilutions on selective medium at the end of the experiment. Data derived from two independent experiments. Strains of sub-clade 1, here represented by *P. protegens* CHA0, generally multiply to levels of about  $10^8$  cfu/larva. Colonization levels in control larvae represent bacterial background levels on King's B agar (King et al 1954) supplemented with ampicillin (40 µg ml<sup>-1</sup>), chloramphenicol (13 µg ml<sup>-1</sup>), and cycloheximide (100 µg ml<sup>-1</sup>).

10



Supplementary Figure S3. Inhibition of mycelial growth of *Pythium ultimum* and *Fusarium* oxysporum on MA and GCY medium. Bacteria were streaked out in a square around a plug of oomycete/fungal mycelium and mycelial diameter was measured after 2 days for *P. ultimum* A) and 8 days for *F. oxysporum* B). Strains with different letters were significantly different from each other based on multiple comparisons by Kruskal-Wallis adjusted by Bonferroni-Holm ( $p \le 0.05$ ). Each strain was tested in an independent second experiment with highly similar results.



# Supplementary Figure S4. Deletion of *plcN* (encoding phospholipase C), but not of *aprX* or the *reb* cluster, reduces oral activity of *P. protegens* CHA0 against insect larvae.

A, C) Systemic activity against *Galleria mellonella*. 30 larvae per treatment were injected with 2 x 10<sup>3</sup> bacterial cells and survival was recorded every hour.

B, D) Oral activity against *Plutella xylostella*. Larvae were fed on artificial diet inoculated with 4 x 10<sup>6</sup> bacterial cells.

B) The virulence of the phospholipase C-negative ( $\Delta plcN$ ) mutant was slightly reduced compared to the wild type strain (p-value<0.01, Log-Rank test, Survival Package in R). Although the effect was not significant in all experiments, the tendency of slower killing was always observed. Each mutant was tested at least three times with similar results. One repetition is depicted in Supplementary Figure S5. CHA0, wild type;  $\Delta plcN$ , phospholipase *C*-negative mutant;  $\Delta gacA$ , GacA-negative mutant;  $\Delta rebB1-3$ , mutant for the *rebB*-cluster;  $\Delta aprX$ , metallopeptidase AprX-negative mutant; 0.9% NaCl served as negative control.



Supplementary Figure S5. Repetition of experiments depicted in Figure 4 and Supplementary Figure S4.

Oral activity against *Plutella xylostella*. Larvae were exposed to artificial diet inoculated with  $4 \times 10^{6}$  bacterial cells.

A) Significant differences according to a Log-Rank test (Survival Package in R) between treatments with the wild type CHA0 and the chitinase C-negative mutant are indicated with \*\*\*(p-value <0.0001). CHA0, wild type;  $\Delta chiC$ , chitinase C-negative mutant;  $\Delta gacA$ , GacA-negative mutant;  $\Delta plcN$ , phospholipase C-negative mutant; 0.9% NaCl served as negative control.

# **Supplementary Tables**

# Supplementary Table S1. Full list of gene clusters associated with biocontrol or insecticidal activity for all strains shown in Figure 1. Supplementary to overview Figure 2.

|                          |                                                |                       |                               |               |              |              | Gen          | e or i                   | meta                             | bol | lite name (Locus t    |                             |              |             | )                     |                       |                       |                                                     |                       |                       |
|--------------------------|------------------------------------------------|-----------------------|-------------------------------|---------------|--------------|--------------|--------------|--------------------------|----------------------------------|-----|-----------------------|-----------------------------|--------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------------------------------------|-----------------------|-----------------------|
|                          |                                                | fit                   | chiC                          | chitinase     | plcN         | aprX         | aprA         | - psl                    | rebB                             |     | DAPG                  | PCA                         | PCN          | 2-OH-PCA    | HCN                   | PRN                   | PLT                   | HPR                                                 | rhizoxin              | CLP                   |
| Accession number         | Strain                                         | PFL_2980-<br>PFL_2987 | PCL1391_1854-<br>PCL1391_1855 | PCL1391_3057- | °CL1391_2966 | °CL1391_2141 | °CL1391_3021 | PCL1391_4983,498<br>1994 | CL1391_0072,<br>0073, 0075, 0076 |     | PFL_5951-<br>PFL_5958 | CL1391_4880-<br>CL1391_4888 | °CL1391_4889 | ochIO6_5227 | PFL_2577-<br>PFL_2579 | PFL_3604-<br>PFL_3607 | PFL_2784-<br>PFL_2800 | <sup>o</sup> chIO6_4242-<br><sup>o</sup> chIO6_4244 | PFL_2989-<br>PFL_2997 | PFL_2145-<br>PFL_2147 |
| CP003190.1               | P. protegens CHAOT                             | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| LHUV0000000              | P. protegens PGNR1                             | +                     | +                             |               | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| LHUW0000000              | P. protegens BRIP                              | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| LHUU00000000             | P. protegens K94.41                            | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| CP000076.1               | P. protegens Pf-5                              | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | +                     | +                     |
| LHUX0000000              | P. protegens PF                                | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | +                     | +                     |
| AP014522.1               | P. protegens Cab57                             | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | -                           | -            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| LHUY0000000              | Pseudomonas sp. CMR5c                          | +                     | +                             | -             | +            | +            | +            | +                        | +                                |     | +                     | +                           | +            | -           | +                     | +                     | +                     | -                                                   | -                     | +                     |
| LHUZ0000000              | P. chlororaphis subsp. piscium JF3835T         | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | +            | -           | +                     | -                     | -                     | -                                                   | -                     | +                     |
| ATBG0000000              | P. chlororaphis HT66                           | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | +            | -           | +                     | -                     | -                     | -                                                   | -                     | +                     |
| LFUT0000000              | P. chlororaphis subsp. piscium PCL1391         | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | +            | -           | +                     | -                     | -                     | -                                                   | -                     | +                     |
| AYUD0000000.1            | P. chlororaphis subsp. aurantiaca PB-St2       | ±                     | +                             | +             | +            | -            | +            | +                        | ±                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| CP009290.1               | P. chlororaphis subsp. aurantiaca JD37         | ±                     | +                             | +             | +            | +            | +            | +                        | +                                |     |                       | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| CP008696.1               | P. chlororaphis PA23                           | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| LHVB0000000              | P. chlororaphis CD                             | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| LHVA0000000              | P. chlororaphis subsp. aureofaciens LMG 1245T  | +                     | +                             | ±             | +            | +            | +            | +                        | +                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| AWWJ0000000              | P. chlororaphis YL-1                           | +                     | +                             | +             | +            | +            | +            | +                        | ±                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     | -                     |
| CM001490.1               | P. chlororaphis O6                             | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | 1                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     |                       |
| CM001559.1               | P. chlororaphis subsp. aureofaciens 30-84      | +                     | +                             | +             | +            | +            | +            | +                        | +                                |     | -                     | +                           | -            | +           | +                     | +                     | -                     | +                                                   | -                     |                       |
| LHVC00000000             | P. chlororaphis subsp. chlororaphis LMG 5004T  | +                     | +                             | +             | +            | +            | +            |                          | +                                |     |                       | +                           | _+           |             | +                     | +                     |                       | +                                                   |                       |                       |
| AF0Y0000000              | Pseudomonas sp. HK44                           | <u> </u>              | L                             |               |              |              | <u> </u>     |                          | <u> </u>                         |     |                       |                             | <u> </u>     |             |                       |                       |                       |                                                     |                       |                       |
| LHVD00000000             | P. brassicacearum TM1A3                        | - 7                   |                               |               |              |              | +            | -                        | -                                |     | +                     | 1                           | -            | -           | +                     | -                     | -                     | -                                                   |                       | -                     |
| AZOC00000000.1           | P. brassicacearum 51MFCVI2.1                   |                       | -                             | -             | -            | -            | -            | -                        | -                                |     | -                     | 1                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| CP002585.1               | P. brassicacearum subsp. brassicacearum NFM421 |                       | -                             | -             | -            | -            | +            | -                        | -                                |     | +                     | 1                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| AHP000000000             | P. brassicacearum Q8r1-96                      |                       | -                             | -             | -            | -            | +            | -                        | -                                |     | +                     | 1                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
|                          | P. kilonensis DSWI 136471                      |                       | -                             | -             | -            | -            | 1            | -                        | -                                |     | ÷.                    |                             | -            | -           | ÷.                    | -                     | -                     | -                                                   | -                     | -                     |
| CD0031E0.1               | P. KIIOIIEIISIS P12                            | -                     | -                             | -             | -            | -            | Ť            | -                        | -                                |     | Ť                     | -                           | -            | -           | Ť                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVE0000000              | P thivenuclensis DSM12194T                     | -                     | -                             | -             | -            | -            | Ţ            | -                        | -                                |     |                       | -                           | -            | -           | 1                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVE0000000              | P thivervalensis DITR?                         |                       |                               |               |              |              | 1            |                          |                                  |     | 1                     |                             |              |             | 11                    |                       |                       |                                                     |                       |                       |
| LHV10000000              | Pseudomonas sp. 012-87                         |                       |                               |               |              |              | 1            |                          |                                  |     | 1                     |                             |              |             | 11                    |                       |                       |                                                     |                       |                       |
| AGBM0000000              | Pseudomonas sp. Q12 07                         |                       | _                             | _             |              | -            | ÷.           | -                        |                                  |     | ÷                     |                             |              | -           | ÷                     | -                     | -                     |                                                     | _                     |                       |
| CP007410.1               | Pseudomonas sp. Q2 of                          | -                     | -                             | -             | -            | -            | +            | - I                      | -                                |     | ÷.                    |                             | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVJ00000000             | Pseudomonas sp. P97.38                         | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | +                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| ATKI0000000              | P. corrugata CFBP5454                          | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVK00000000             | P corrugata DSM7228 T                          | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| AUPB00000000.1           | P. mediterranea CFBP 5447                      | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVL0000000              | Pseudomonas sp. Pf153                          | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| CP003880.1               | Pseudomonas sp. UW4                            | -                     | -                             | -             | -            | -            | -            | -                        | -                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| LHVM0000000              | Pseudomonas sp. P1.8                           | -                     | -                             | -             | -            | -            | -            | -                        | -                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| ARLP00000000             | P. mandelii 36MFCvi1.1                         | ±                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| AZQQ0000000              | P. mandelii PD30                               | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| CP005960.1, CP005961.1   | P. mandelii JR-1                               | -                     | -                             | +             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | -                     |
| CP000094.2               | Pseudomonas sp. Pf0-1                          | -                     | -                             | +             | -            | +            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | +                     |
| LHVN0000000              | Pseudomonas sp. P1.31                          | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     |                       |
| ALYL0000000              | Pseudomonas sp. R124                           | -                     | -                             | +             | -            | +            | +            |                          | -                                |     | -                     | -                           | -            | -           | +                     | -                     | -                     | -                                                   | -                     | +                     |
| CP008896.1               | Pseudomonas sp. UK4                            | -                     | -                             | -             | -            | -            | +            | +                        | -                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| JENC0000000.1            | Pseudomonas sp. ATCC 17400                     | -                     |                               |               | -            |              | +            | +                        | -                                |     |                       |                             | -            | -           | -                     | -                     | -                     | -                                                   |                       | -                     |
| AKXH0000000              | Pseudomonas sp. BBc6R8                         |                       | -                             | -             | +            | -            | +            | ±                        | -                                |     | 1                     | 1                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| CP004045.1               | P. poae RE*1-1-14                              |                       |                               | - 7           |              |              | +            | ±                        | -                                |     |                       |                             | -            | -           |                       | -                     | -                     | -                                                   |                       | +                     |
| ANIZW0100000             | P. pode BRIP34879                              | -                     | -                             |               |              | -            | +            | ±                        | -                                |     |                       |                             | -            | -           | -                     | -                     | -                     | -                                                   | -                     | +                     |
| AUUH0000000              | P. Veronii 1YdB1EX2                            | ±                     | -                             |               |              | -            | +            | -                        | -                                |     |                       |                             | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| LP006852.1               | Pseudomonas sp. TKP                            |                       | -                             | -             | -            | -            | +            | ±                        | -                                |     |                       |                             | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
|                          | Pseudomonas so MIACH                           |                       |                               | Ť             |              |              |              | +                        |                                  |     |                       |                             |              |             |                       |                       |                       |                                                     |                       | +                     |
| NC 013660 1              | Pseudomonas sp. SPW25                          |                       | -                             | -             | -            | -            | Ţ            | ÷                        | -                                |     |                       |                             |              | -           | -                     | -                     | -                     |                                                     | -                     |                       |
| AV0600000000             | Pseudomonas sp. 56W25                          |                       |                               |               |              |              | +            | +                        |                                  |     |                       |                             |              |             |                       |                       |                       |                                                     |                       |                       |
| CM001025.1               | Pseudomonas sp. WH6                            | -                     | -                             |               | -            | -            | +            | Ť.                       | -                                |     |                       |                             |              | -           | -                     |                       |                       | -                                                   | -                     | -                     |
| AMZG0000000.1            | Pseudomonas sp. BS2                            | -                     | -                             | -             | -            | -            | +            | -                        | -                                |     |                       |                             | +            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| CM001514.1               | P. synxantha BG33R                             | -                     | -                             | +             | -            | -            | +            | ±                        | ±                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | +                     |
| CM001513.1               | Pseudomonas sp. SS101                          | -                     | -                             | +             | -            | -            | +            | ±                        | ±                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | +                     |
| AOJA00000000             | Pseudomonas sp. FH5                            | -                     | -                             | +             | -            | -            | +            | ±                        | ±                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| NC_017911.1; NC_021361.1 | Pseudomonas sp. A506                           | -                     | -                             | +             | -            | -            | +            | ±                        | ±                                |     | -                     | -                           | -            | -           | -                     | -                     | -                     | -                                                   | -                     | -                     |
| AHZX00000000.1           | P. fragi B25                                   |                       | -                             | -             |              | +            | -            |                          | -                                |     | -                     |                             | -            | -           | ±                     |                       | -                     | -                                                   |                       |                       |

Loci were defined as being present when showing 70% similarity over 70% of gene length to the loci indicated in the table. As none of the strains harbors all loci, three different reference strains (PCL1391, Pf-5, O6) were used.

+, gene/s present; -, gene/s absent; ±, gene cluster partially present

*P. fluorescens* insecticidal toxin-cluster (*fit*); chitinase C (*chiC*); phospholipase C (*plcN*); metallopeptidase *aprX* (*aprX*); alkaline metalloprotease *aprA* (*aprA*); *rebB*-cluster (*rebB*); *psl*-cluster (*psl*); 2,4-diacetylphloroglucinol (DAPG); phenazines: phenazine-1-carboxamide (PCN), phenazine-1-carboxylic acid (PCA), 2-hydroxy-PCA (2-OH-PCA); hydrogen cyanide (HCN); pyrrolnitrin (Prn), pyoluteorin (Plt); 2-hexyl-5-propyl-alkylresorcinol (HPR); cyclic lipopeptide (CLP)

As most genomes consist of several contigs, genes might be found to be absent in a certain strain although they are in fact present, but are located at the border of contigs.

| Name               | Relevant characteristics <sup>1</sup> or sequence $(5' \rightarrow 3')^2$                                                                                        | Reference or comment                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Pseudomonas        |                                                                                                                                                                  |                                           |
| protegens          |                                                                                                                                                                  |                                           |
| CHA0               | Wild type                                                                                                                                                        | (Jousset et al 2014, Stutz et al<br>1986) |
| CHA5099            | Δ <i>chiC</i> (deletion of PFLCHA0_c21380)                                                                                                                       | This study                                |
| CHA5221            | Δ <i>rebB1-3</i> (deletion of PFLCHA0_c01820 through<br>PFLCHA0_c01860)                                                                                          | This study                                |
| CHA5222            | $\Delta a pr X$ (deletion of PFLCHA0_c25470)                                                                                                                     | This study                                |
| CHA5223            | Δ <i>plcN</i> (deletion of PFLCHA0_c31570)                                                                                                                       | This study                                |
| Escherichia coli   |                                                                                                                                                                  |                                           |
| DH5α,<br>DH5α λpir | Laboratory strains                                                                                                                                               | (Sambrook and Russel 2001)                |
| Plasmids           |                                                                                                                                                                  |                                           |
| pEMG               | pSEVA212S; <i>ori</i> R6K, <i>lacZα</i> MCS flanked by two I-SceI sites;<br>Km <sup>r</sup> , Ap <sup>r</sup>                                                    | (Martinez-Garcia and de<br>Lorenzo 2011)  |
| pME8327            | pEMG-Δ <i>chiC</i> ; suicide plasmid for the in-frame deletion of<br>PFLCHA0_c21380 ( <i>chiC</i> ) in CHA0; Km <sup>r</sup>                                     | This study                                |
| pME11026           | pEMG-Δ <i>rebB1-3</i> ; suicide plasmid for the deletion of the<br>PFLCHAO_c01820 to PFLCHA0_c01860 region ( <i>rebB1-3</i><br>cluster) in CHA0; Km <sup>r</sup> | This study                                |
| pME11027           | pEMG-Δ <i>aprX</i> ; suicide plasmid for the in-frame deletion of<br>PFLCHA0_c25470 ( <i>aprX</i> ) in CHA0; Km <sup>r</sup>                                     | This study                                |
| pME11028           | pEMG-Δ <i>plcN</i> ; suicide plasmid for the in-frame deletion of<br>PFLCHA0_c31570 ( <i>plcN</i> ) in CHA0; Km <sup>r</sup>                                     | This study                                |
| pSW-2              | oriRK2, xylS, P <sub>m</sub> ::I-scel; Gm <sup>r</sup>                                                                                                           | (Martinez-Garcia and de<br>Lorenzo 2011)  |
| Primers            |                                                                                                                                                                  |                                           |
| aprX-del-1         | G <u>GAATTC</u> GATGGGCCTGTTCTGAGAGG, EcoRI                                                                                                                      | Deletion of CHA0 aprX                     |
| aprX-del-2         | CCC <u>AAGCTT</u> TGCTTCCGAGAGTGCTTTTGAC, HindIII                                                                                                                | Deletion of CHA0 aprX                     |
| aprX-del-3         | CCC <u>AAGCTT</u> AGCCTGATGATCGACCTGAC, HindIII                                                                                                                  | Deletion of CHA0 aprX                     |
| aprX-del-4         | CG <u>GGATCC</u> TACCAGCAGTTCTGCAACCAG, BamHI                                                                                                                    | Deletion of CHA0 aprX                     |
| chiD-1             | CG <u>GAATTC</u> GCCACAGGCTCAACTAAAACAT, EcoRI                                                                                                                   | Deletion of CHA0 chiC                     |
| chiD-2             | GG <u>GGTACC</u> AATGCTCGGCATCAGGGAAGCA, Kpnl                                                                                                                    | Deletion of CHA0 chiC                     |
| chiD-3             | GG <u>GGTACC</u> CATGGCTGAGTTGTGACGGCCA, Kpnl                                                                                                                    | Deletion of CHA0 chiC                     |
| chiD-4             | CG <u>GGATCC</u> CGCTTACCAATGATTACAACTG, BamHI                                                                                                                   | Deletion of CHA0 chiC                     |
| plcC-del-1         | G <u>GAATTC</u> ATAACGCCACCCATTTCAGC, EcoRI                                                                                                                      | Deletion of CHA0 plcN                     |
| plcC-del-2         | CCC <u>AAGCTT</u> ACTGGGCATGGGTTATTGAGTC, HindIII                                                                                                                | Deletion of CHA0 plcN                     |
| plcC-del-3         | CCCAAGCTTGCATGAAGACCTTGGCAAAAATG, HindIII                                                                                                                        | Deletion of CHA0 plcN                     |
| plcC-del-4         | CG <u>GGATCC</u> GGCCTATGCACGAAAGTTGT, BamHI                                                                                                                     | Deletion of CHA0 plcN                     |
| reb-del-1          | G <u>GAATTC</u> GTATTGCCCGGTTTGCAGC, EcoRI                                                                                                                       | Deletion of CHA0 reb cluster              |
| reb-del-2          | CCC <u>AAGCTT</u> ACTGGGCATGGGTTATTGAGTC, HindIII                                                                                                                | Deletion of CHA0 reb cluster              |
| reb-del-3          | CCC <u>AAGCTT</u> GCATGAAGACCTTGGCAAAAATG, HindIII                                                                                                               | Deletion of CHA0 reb cluster              |
| reb-del-4          | CG <u>GGATCC</u> CGCTTACCAATGATTACAACTG, BamHI                                                                                                                   | Deletion of CHA0 reb cluster              |

# Supplementary Table S2. Strains, plasmids and primers used in this study

<sup>1</sup> Ap<sup>r</sup>, ampicillin; Gm<sup>r</sup>, gentamicin; and Km<sup>r</sup>, kanamycin resistance, respectively. <sup>2</sup> Specified restriction sites are underlined.

Supplementary Table S3. Mean amino acid identities (AAI) and Genome-to-Genome Distance Calculator (GGDC) values for all genomes related to *P. brassicacearum*, *P. kilonensis* and *P. thivervalensis*.

| Α                                                          | AAI values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                           |                                                                                          |                                                                                                 |                                                                                          |                                                                                           |                                                                                           |                                                                                           |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                        | 2                                                                                        | 3                                                                                        | 4                                                                                        | 5                                                                                        | 6                                                                         | 7                                                                                        | 8                                                                                               | 9                                                                                        | 10                                                                                        | 11                                                                                        | 12                                                                                        |
| 1                                                          | <i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM $421^{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | 99.82                                                                                    | 99.81                                                                                    | 99.85                                                                                    | 97.74                                                                                    | 97.74                                                                     | 97.82                                                                                    | 96.44                                                                                           | 96.39                                                                                    | 94.67                                                                                     | 94.67                                                                                     | 94.87                                                                                     |
| 2                                                          | P. brassicacearum TM1A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.82                                                                                    |                                                                                          | 99.79                                                                                    | 99.84                                                                                    | 97.73                                                                                    | 97.73                                                                     | 97.82                                                                                    | 96.44                                                                                           | 96.38                                                                                    | 94.66                                                                                     | 94.67                                                                                     | 94.85                                                                                     |
| 3                                                          | P. brassicacearum 51MCFVI21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.81                                                                                    | 99.79                                                                                    |                                                                                          | 99.81                                                                                    | 97.72                                                                                    | 97.72                                                                     | 97.78                                                                                    | 96.42                                                                                           | 96.37                                                                                    | 94.66                                                                                     | 94.65                                                                                     | 94.84                                                                                     |
| 4                                                          | Pseudomonas sp. Q8r1-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.85                                                                                    | 99.84                                                                                    | 99.81                                                                                    |                                                                                          | 97.73                                                                                    | 97.73                                                                     | 97.82                                                                                    | 96.43                                                                                           | 96.38                                                                                    | 94.66                                                                                     | 94.65                                                                                     | 94.86                                                                                     |
| 5                                                          | P. kilonensis DSM 13647 <sup>T</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.74                                                                                    | 97.73                                                                                    | 97.72                                                                                    | 97.73                                                                                    |                                                                                          | 99.49                                                                     | 98.33                                                                                    | 96.61                                                                                           | 96.59                                                                                    | 94.54                                                                                     | 94.54                                                                                     | 94.73                                                                                     |
| 6                                                          | P. kilonensis P12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.74                                                                                    | 97.73                                                                                    | 97.72                                                                                    | 97.73                                                                                    | 99.49                                                                                    |                                                                           | 98.33                                                                                    | 96.61                                                                                           | 96.57                                                                                    | 94.50                                                                                     | 94.50                                                                                     | 94.72                                                                                     |
| 7                                                          | Pseudomonas sp. F113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.82                                                                                    | 97.82                                                                                    | 97.78                                                                                    | 97.82                                                                                    | 98.33                                                                                    | 98.33                                                                     |                                                                                          | 96.62                                                                                           | 96.58                                                                                    | 94.58                                                                                     | 94.58                                                                                     | 94.71                                                                                     |
| 8                                                          | P. thivervalensis DSM 13194 <sup>T</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.44                                                                                    | 96.44                                                                                    | 96.42                                                                                    | 96.43                                                                                    | 96.61                                                                                    | 96.61                                                                     | 96.62                                                                                    |                                                                                                 | 99.48                                                                                    | 94.43                                                                                     | 94.43                                                                                     | 94.41                                                                                     |
| 9                                                          | P. thivervalensis PITR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.39                                                                                    | 96.38                                                                                    | 96.37                                                                                    | 96.38                                                                                    | 96.59                                                                                    | 96.57                                                                     | 96.58                                                                                    | 99.48                                                                                           |                                                                                          | 94.40                                                                                     | 94.40                                                                                     | 94.37                                                                                     |
| 10                                                         | Pseudomonas sp. Q12-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.67                                                                                    | 94.66                                                                                    | 94.66                                                                                    | 94.66                                                                                    | 94.54                                                                                    | 94.50                                                                     | 94.58                                                                                    | 94.43                                                                                           | 94.40                                                                                    |                                                                                           | 99.79                                                                                     | 94.48                                                                                     |
| 11                                                         | Pseudomonas sp. Q2-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94.67                                                                                    | 94.67                                                                                    | 94.65                                                                                    | 94.65                                                                                    | 94.54                                                                                    | 94.50                                                                     | 94.58                                                                                    | 94.44                                                                                           | 94.40                                                                                    | 99.79                                                                                     |                                                                                           | 94.47                                                                                     |
| 12                                                         | Pseudomonas sp. DF41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.87                                                                                    | 94.85                                                                                    | 94.84                                                                                    | 94.86                                                                                    | 94.73                                                                                    | 94.72                                                                     | 94.71                                                                                    | 94.41                                                                                           | 94.37                                                                                    | 94.48                                                                                     | 94.47                                                                                     |                                                                                           |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                           |                                                                                          |                                                                                                 |                                                                                          |                                                                                           |                                                                                           |                                                                                           |
| -                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                                          |                                                                           |                                                                                          |                                                                                                 |                                                                                          |                                                                                           |                                                                                           |                                                                                           |
| в                                                          | GGDC values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | •                                                                                        |                                                                                          |                                                                                          | -                                                                                        |                                                                           | -                                                                                        | •                                                                                               | •                                                                                        | 40                                                                                        |                                                                                           | 40                                                                                        |
| В                                                          | GGDC values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                        | 2                                                                                        | 3                                                                                        | 4                                                                                        | 5                                                                                        | 6                                                                         | 7                                                                                        | 8                                                                                               | 9                                                                                        | 10                                                                                        | 11                                                                                        | 12                                                                                        |
| B<br>1                                                     | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM $421^{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                        | <b>2</b><br>96.0                                                                         | <b>3</b><br>96.9                                                                         | <b>4</b><br>96.6                                                                         | <b>5</b><br>59.1                                                                         | <b>6</b><br>59.1                                                          | <b>7</b><br>61.0                                                                         | <b>8</b><br>46.2                                                                                | <b>9</b><br>45.9                                                                         | <b>10</b><br>36.5                                                                         | <b>11</b><br>36.7                                                                         | <b>12</b><br>38.6                                                                         |
| B<br>1<br>2                                                | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b><br>96.0                                                                         | <b>2</b><br>96.0                                                                         | <b>3</b><br>96.9<br>96.3                                                                 | <b>4</b><br>96.6<br>96.1                                                                 | <b>5</b><br>59.1<br>59.2                                                                 | <b>6</b><br>59.1<br>59.1                                                  | <b>7</b><br>61.0<br>60.9                                                                 | <b>8</b><br>46.2<br>46.1                                                                        | <b>9</b><br>45.9<br>46.0                                                                 | <b>10</b><br>36.5<br>36.3                                                                 | <b>11</b><br>36.7<br>36.4                                                                 | <b>12</b><br>38.6<br>38.4                                                                 |
| B<br>1<br>2<br>3                                           | GGDC values P. brassicacearum subsp. brassicacearum NFM 421 <sup>™</sup> P. brassicacearum TM1A3 P. brassicacearum 51MCFVI21 P. documentary of the second seco | <b>1</b><br>96.0<br>96.8                                                                 | <b>2</b><br>96.0<br>96.3                                                                 | <b>3</b><br>96.9<br>96.3                                                                 | <b>4</b><br>96.6<br>96.1<br>97.0                                                         | <b>5</b><br>59.1<br>59.2<br>59.1                                                         | <b>6</b><br>59.1<br>59.1<br>59.2                                          | <b>7</b><br>61.0<br>60.9<br>61.1                                                         | <b>8</b><br>46.2<br>46.1<br>46.2                                                                | <b>9</b><br>45.9<br>46.0<br>46.0                                                         | <b>10</b><br>36.5<br>36.3<br>36.5                                                         | <b>11</b><br>36.7<br>36.4<br>36.5                                                         | <b>12</b><br>38.6<br>38.4<br>38.4                                                         |
| B<br>1<br>2<br>3<br>4                                      | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b><br>96.0<br>96.8<br>96.6                                                         | <b>2</b><br>96.0<br>96.3<br>96.1                                                         | <b>3</b><br>96.9<br>96.3<br>97.0                                                         | <b>4</b><br>96.6<br>96.1<br>97.0                                                         | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0                                                 | <b>6</b><br>59.1<br>59.2<br>58.9                                          | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9                                                 | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1                                                        | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0                                                 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6                                                 | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7                                                 | <b>12</b><br>38.6<br>38.4<br>38.4<br>38.5                                                 |
| B<br>1<br>2<br>3<br>4<br>5                                 | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM $421^{T}$<br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96<br><i>P. kilonensis</i> DSM 13647 <sup>T</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1                                                 | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2                                                 | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1                                                 | <b>4</b><br>96.6<br>96.1<br>97.0                                                         | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0                                                 | <b>6</b><br>59.1<br>59.2<br>58.9<br>88.5                                  | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5                                         | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4                                                | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0                                         | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4                                         | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5                                         | <b>12</b><br>38.6<br>38.4<br>38.4<br>38.5<br>38.8                                         |
| B<br>1<br>2<br>3<br>4<br>5<br>6                            | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96<br><i>P. kilonensis</i> DSM 13647 <sup>T</sup><br><i>P. kilonensis</i> P12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>96.0<br>96.8<br>96.6<br>59.1<br>59.1                                                | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1                                         | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2                                         | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9                                         | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>888.5                                        | <b>6</b><br>59.1<br>59.2<br>58.9<br>88.5                                  | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5                                 | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2                                        | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0<br>46.9                                 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5                                 | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5                                 | <b>12</b><br>38.6<br>38.4<br>38.4<br>38.5<br>38.8<br>38.3                                 |
| B<br>1<br>2<br>3<br>4<br>5<br>6<br>7                       | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96<br><i>P. kilonensis</i> DSM 13647 <sup>T</sup><br><i>P. kilonensis</i> P12<br><i>Pseudomonas</i> sp. F113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1<br>59.1<br>61.0                                 | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1<br>60.9                                 | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2<br>61.1                                 | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9<br>60.9                                 | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>88.5<br>64.5                                 | <b>6</b><br>59.1<br>59.2<br>58.9<br>88.5<br>64.5                          | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5                                 | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2<br>46.7                                | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0<br>46.9<br>46.3                         | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5<br>36.2                         | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5<br>36.5<br>36.3                 | <b>12</b><br>38.6<br>38.4<br>38.5<br>38.8<br>38.3<br>38.3<br>38.4                         |
| B<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96<br><i>P. kilonensis</i> DSM 13647 <sup>T</sup><br><i>P. kilonensis</i> P12<br><i>Pseudomonas</i> sp. F113<br><i>P. thivervalensis</i> DSM 13194 <sup>T</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1<br>59.1<br>61.0<br>46.2                         | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1<br>60.9<br>46.1                         | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2<br>61.1<br>46.2                         | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9<br>60.9<br>46.1                         | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>88.5<br>64.5<br>47.4                         | <b>6</b><br>59.1<br>59.2<br>58.9<br>88.5<br>64.5<br>47.2                  | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5<br>46.7                         | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2<br>46.7                                | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0<br>46.9<br>46.3<br>88.0                 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5<br>36.2<br>35.4                 | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5<br>36.3<br>35.5                 | <b>12</b><br>38.6<br>38.4<br>38.5<br>38.8<br>38.3<br>38.4<br>37.2                         |
| B<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9             | GGDC values P. brassicacearum subsp. brassicacearum NFM 421 <sup>T</sup> P. brassicacearum TM1A3 P. brassicacearum 51MCFVI21 Pseudomonas sp. Q8r1-96 P. kilonensis DSM 13647 <sup>T</sup> P. kilonensis P12 Pseudomonas sp. F113 P. thivervalensis DSM 13194 <sup>T</sup> P. thivervalensis PITR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1<br>59.1<br>61.0<br>46.2<br>45.9                 | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1<br>60.9<br>46.1<br>46.0                 | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2<br>61.1<br>46.2<br>46.0                 | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9<br>60.9<br>46.1<br>46.0                 | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>88.5<br>64.5<br>47.4<br>47.0                 | 6<br>59.1<br>59.2<br>58.9<br>88.5<br>64.5<br>47.2<br>46.9                 | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5<br>64.5<br>46.7<br>46.3         | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2<br>46.7<br>88.0                        | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0<br>46.9<br>46.3<br>88.0                 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5<br>36.2<br>35.4<br>35.3         | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5<br>36.3<br>35.5<br>35.3         | <b>12</b><br>38.6<br>38.4<br>38.5<br>38.8<br>38.3<br>38.4<br>37.2<br>37.0                 |
| B<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | GGDC values P. brassicacearum subsp. brassicacearum NFM 421 <sup>T</sup> P. brassicacearum TM1A3 P. brassicacearum 51MCFVI21 Pseudomonas sp. Q8r1-96 P. kilonensis DSM 13647 <sup>T</sup> P. kilonensis P12 Pseudomonas sp. F113 P. thivervalensis DSM 13194 <sup>T</sup> P. thivervalensis PITR2 Pseudomonas sp. Q12-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1<br>59.1<br>61.0<br>46.2<br>45.9<br>36.5         | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1<br>60.9<br>46.1<br>46.0<br>36.3         | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2<br>61.1<br>46.2<br>46.0<br>36.5         | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9<br>60.9<br>46.1<br>46.0<br>36.6         | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>88.5<br>64.5<br>47.4<br>47.0<br>36.4         | 6<br>59.1<br>59.2<br>58.9<br>88.5<br>64.5<br>47.2<br>46.9<br>36.5         | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5<br>46.7<br>46.3<br>36.2         | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2<br>46.7<br>888.0<br>35.4               | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>46.9<br>46.3<br>88.0<br>35.3                 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5<br>36.2<br>35.4<br>35.3         | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5<br>36.3<br>35.5<br>35.3<br>96.0 | <b>12</b><br>38.6<br>38.4<br>38.5<br>38.8<br>38.3<br>38.4<br>37.2<br>37.0<br>37.1         |
| B<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | <b>GGDC values</b><br><i>P. brassicacearum</i> subsp. <i>brassicacearum</i> NFM 421 <sup>T</sup><br><i>P. brassicacearum</i> TM1A3<br><i>P. brassicacearum</i> 51MCFVI21<br><i>Pseudomonas</i> sp. Q8r1-96<br><i>P. kilonensis</i> DSM 13647 <sup>T</sup><br><i>P. kilonensis</i> P12<br><i>Pseudomonas</i> sp. F113<br><i>P. thivervalensis</i> DSM 13194 <sup>T</sup><br><i>P. thivervalensis</i> PITR2<br><i>Pseudomonas</i> sp. Q12-87<br><i>Pseudomonas</i> sp. Q2-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b><br>96.0<br>96.8<br>96.6<br>59.1<br>59.1<br>61.0<br>46.2<br>45.9<br>36.5<br>36.7 | <b>2</b><br>96.0<br>96.3<br>96.1<br>59.2<br>59.1<br>60.9<br>46.1<br>46.0<br>36.3<br>36.4 | <b>3</b><br>96.9<br>96.3<br>97.0<br>59.1<br>59.2<br>61.1<br>46.2<br>46.0<br>36.5<br>36.5 | <b>4</b><br>96.6<br>96.1<br>97.0<br>59.0<br>58.9<br>60.9<br>46.1<br>46.0<br>36.6<br>36.7 | <b>5</b><br>59.1<br>59.2<br>59.1<br>59.0<br>88.5<br>64.5<br>47.4<br>47.0<br>36.4<br>36.5 | 6<br>59.1<br>59.2<br>58.9<br>88.5<br>64.5<br>47.2<br>46.9<br>36.5<br>36.5 | <b>7</b><br>61.0<br>60.9<br>61.1<br>60.9<br>64.5<br>64.5<br>46.7<br>46.3<br>36.2<br>36.3 | <b>8</b><br>46.2<br>46.1<br>46.2<br>46.1<br>47.4<br>47.2<br>46.7<br><b>88.0</b><br>35.4<br>35.5 | <b>9</b><br>45.9<br>46.0<br>46.0<br>46.0<br>47.0<br>46.9<br>46.3<br>88.0<br>35.3<br>35.3 | <b>10</b><br>36.5<br>36.3<br>36.5<br>36.6<br>36.4<br>36.5<br>36.2<br>35.4<br>35.3<br>96.0 | <b>11</b><br>36.7<br>36.4<br>36.5<br>36.7<br>36.5<br>36.5<br>36.3<br>35.5<br>35.3<br>96.0 | <b>12</b><br>38.6<br>38.4<br>38.5<br>38.8<br>38.3<br>38.4<br>37.2<br>37.0<br>37.1<br>37.2 |

| Sub-clade   | Strain                                                 | LT50 (d)                            | survival (%) at 3 dpi ±sdev |
|-------------|--------------------------------------------------------|-------------------------------------|-----------------------------|
| Sub-clade 1 | P. protegens CHA0 <sup>T</sup>                         | 1.6 (1.5; 1.8) <sup>abc</sup>       | 3.1 ± 6.3 *                 |
|             | P. protegens PGNR1                                     | 1.6 (1.4; 1.8) <sup>abc</sup>       | 0.0 ± 0.0 *                 |
|             | P. protegens BRIP                                      | 1.3 (1.1; 1.5) <sup>a</sup>         | 0.0 ± 0.0 *                 |
|             | P. protegens K94.41                                    | 1.0 (-19.1; 21.2) <sup>abcdef</sup> | 0.0 ± 0.0 *                 |
|             | P. protegens PF                                        | 1.4 (1.2; 1.6) <sup>ab</sup>        | 0.0 ± 0.0 *                 |
|             | Pseudomonas sp. CMR12a                                 | 1.9 (1.7; 2.2) <sup>cde</sup>       | 6.3 ± 7.2 *                 |
|             | <i>P. chl. piscium</i> DSM $21509^{T}$                 | 1.6 (1.4; 1.8) <sup>abc</sup>       | 3.1 ± 6.3 *                 |
|             | P. chl. piscium PCL1391                                | 1.7 (1.5; 1.9) <sup>bcd</sup>       | 0.0 ± 0.0 *                 |
|             | P. chl. aureofaciens CD                                | 1.5 (1.3; 1.7) <sup>ab</sup>        | 3.1 ± 6.3 *                 |
|             | <i>P. chl. aureofaciens</i> LMG $1245^{T}$             | 2.1 (1.9; 2.4) <sup>def</sup>       | 21.9 ± 12.0 *               |
|             | <i>P. chl. chlororaphis</i> LMG $5004^{T}$             | 2.4 (2.1; 2.8) <sup>ef</sup>        | 31.3 ± 12.5 *               |
| Sub-clade 2 | P. brassicacearum TM1A3                                | NA                                  | 81.3 ± 21.7                 |
|             | <i>P. kilonensis</i> DSM $13647^{T}$                   | NA                                  | 93.8 ± 7.2                  |
|             | P. kilonensis P12                                      | NA                                  | 87.5 ± 10.2                 |
|             | <i>P. thivervalensis</i> DSM $13194^{T}$               | NA                                  | 84.4 ± 12.0                 |
|             | P. thivervalensis PITR2                                | NA                                  | 90.6 ± 12.0                 |
|             | Pseudomonas sp. Q12-87                                 | NA                                  | 81.3 ± 7.2                  |
|             | Pseudomonas sp. P97.38                                 | NA                                  | 87.5 ± 17.7                 |
|             | <i>P. corrugata</i> DSM 7228 <sup><math>T</math></sup> | NA                                  | 75.0 ± 21.7                 |
|             | Pseudomonas sp. Pf153                                  | NA                                  | 93.8 ± 7.2                  |
|             | Pseudomonas sp. P1.8                                   | NA                                  | 87.5 ± 10.2                 |
|             | Pseudomonas sp. P1.31                                  | NA                                  | 84.4 ± 12.0                 |
| Sub-clade 3 | <i>P. fluorescens</i> DSM $50090^{T}$                  | NA                                  | 65.6 ± 12.0 *               |
|             | Pseudomonas sp. MIACH                                  | 2.7 (1.8; 3.5) <sup>def</sup>       | 45.8 ± 26.0 *               |
|             | Pseudomonas sp. SS101                                  | 2.8 (2.3; 3.3) <sup>f</sup>         | 46.9 ± 27.7 *               |
| control     | 0.9% NaCL                                              | NA                                  | 96.9 ± 6.3                  |

Supplementary Table S4. Lethal time (LT<sub>50</sub>) and survival of *Plutella xylostella* larvae upon oral uptake of *Pseudomonas* strains.

Repetition of the experiment depicted in Figure 3 and Table 2. *Plutella xylostella* larvae were exposed to food pellets inoculated with 8 x  $10^7$  bacterial cells.  $LT_{50}$  values are estimates based on the generalized linear model using the MASS package in R (Venables and Ripley 2002). Numbers in brackets depict 95% confidence intervals for  $LT_{50}$  and significantly different values within the same column are followed by different letters.

NA = no  $LT_{50}$  value was calculated, because end mortality was less than 50%.

Asterisks indicate significant differences compared to control larvae treated with 0.9% NaCl based on multiple comparisons by Kruskal-Wallis adjusted by Bonferroni-Holm ( $p \le 0.05$ ).

| Sub-clade   | Strain                                                         | Biocontrol Activity relative to P. protegens CHA0 |     |      |   |                 |   |  |
|-------------|----------------------------------------------------------------|---------------------------------------------------|-----|------|---|-----------------|---|--|
|             |                                                                | repetitio                                         | n 1 |      |   | repetition 2    |   |  |
| Sub-clade 1 | <i>P. protegens</i> $CHA0^{T}$                                 | 1.00                                              |     |      | * | 1.00            | * |  |
|             | P. protegens PGNR1                                             | 1.02                                              | ±   | 0.14 | * | 0.76 ± 0.05     | * |  |
|             | P. protegens BRIP                                              | 0.94                                              | ±   | 0.24 | * | $1.07 \pm 0.09$ | * |  |
|             | P. protegens K94.41                                            | 0.43                                              | ±   | 0.21 | * | $0.50 \pm 0.23$ | * |  |
|             | P. protegens PF                                                | 0.35                                              | ±   | 0.16 | * | 0.49 ± 0.33     | * |  |
|             | Pseudomonas sp. CMR5c                                          | 0.02                                              | ±   | 0.04 |   | $0.00 \pm 0.00$ |   |  |
|             | Pseudomonas sp. CMR12a                                         | 0.51                                              | ±   | 0.25 | * | $0.00 \pm 0.00$ |   |  |
|             | <i>P. chl. piscium</i> DSM $21509^{T}$                         | 0.54                                              | ±   | 0.28 | * | 0.21 ± 0.30     |   |  |
|             | P. chl. piscium PCL1391                                        | 0.72                                              | ±   | 0.15 | * | $0.55 \pm 0.30$ | * |  |
|             | <i>P. chl. aureofaciens</i> LMG $1245^{T}$                     | 0.15                                              | ±   | 0.23 |   | 0.39 ± 0.56     |   |  |
|             | P. chl. aureofaciens CD                                        | 0.89                                              | ±   | 0.11 | * | $0.51 \pm 0.11$ | * |  |
|             | <i>P. chl. chlororaphis</i> LMG 5004 <sup><math>T</math></sup> | 0.00                                              | ±   | 0.00 |   | $0.00 \pm 0.00$ |   |  |
| Sub-clade 2 | P. brassicacearum TM1A3                                        | 0.72                                              | ±   | 0.22 | * | 0.31 ± 0.31     |   |  |
|             | P. kilonensis DSM $13647^{T}$                                  | 0.00                                              | ±   | 0.00 |   | $0.00 \pm 0.00$ |   |  |
|             | P. kilonensis P12                                              | 0.23                                              | ±   | 0.29 |   | $0.18 \pm 0.20$ |   |  |
|             | <i>P. thivervalensis</i> DSM $13194^{T}$                       | 0.31                                              | ±   | 0.30 |   | $0.28 \pm 0.28$ |   |  |
|             | P. thivervalensis PITR2                                        | 0.70                                              | ±   | 0.15 | * | 0.74 ± 0.07     | * |  |
|             | Pseudomonas sp. Q12-87                                         | 0.67                                              | ±   | 0.21 | * | $0.58 \pm 0.32$ | * |  |
|             | Pseudomonas sp. P97.38                                         | 0.61                                              | ±   | 0.12 | * | 0.51 ± 0.17     | * |  |
|             | <i>P. corrugata</i> DSM 7228 <sup><math>T</math></sup>         | 0.00                                              | ±   | 0.00 |   | $0.06 \pm 0.14$ |   |  |
|             | Pseudomonas sp. Pf153                                          | 0.52                                              | ±   | 0.12 | * | $0.25 \pm 0.38$ |   |  |
|             | Pseudomonas sp. P1.8                                           | 0.05                                              | ±   | 0.12 |   | $0.33 \pm 0.34$ |   |  |
|             | Pseudomonas sp. P1.31                                          | 0.61                                              | ±   | 0.11 | * | 0.54 ± 0.21     | * |  |
| Sub-clade 3 | P. fluorescens DSM 50090 <sup>™</sup>                          | 0.00                                              | ±   | 0.00 |   | $0.00 \pm 0.00$ |   |  |
|             | Pseudomonas sp. MIACH                                          | 0.39                                              | ±   | 0.47 |   | 1.02 ± 0.47     | * |  |
|             | Pseudomonas sp. SS101                                          | 0.82                                              | ±   | 0.25 | * | $0.00 \pm 0.00$ |   |  |

| Supplementary | / Table S5. Biocontro | l activity against | Pythium ultimum | on cucumber plants |
|---------------|-----------------------|--------------------|-----------------|--------------------|
|               |                       |                    |                 |                    |

Biocontrol activity was calculated after Rezzonico et al (2007) as:

 $(1 - ((W_{c} - W_{I})/(W_{c} - W_{P}))) \times 100$ 

using shoot weight obtained in the control with neither bacterial nor pathogen inoculum ( $W_c$ ), in the unprotected control with the pathogen alone ( $W_p$ ) and in presence of the tested bacterial strain and the pathogen ( $W_l$ ). Due to the large number of strains, not all strains could be tested in the same experiment. Therefore, biocontrol activity is shown relative to the biocontrol activity of our model strain *P. protegens* CHAO, which was included as a reference in all experiments. A total of seven experiments was performed and each strain was tested at least twice (repetition 1 and repetition 2). Biocontrol activity for *P. protegens* CHAO ranged between 63% and 100%.

Means of five replicates  $\pm$  sdev are shown. Statistics was performed for each experiment separately on absolute biocontrol activity values. Asterisks indicate that strains displayed significant biocontrol activity based on a t-test (p = 0.05) against the unprotected control with pathogen alone (W<sub>P</sub>).

| Sub-clade   | Strain                                                             | # Reads<br>* 10 <sup>6</sup> | # Contigs | Genome size<br>(Mbp) | N50<br>(kb) | Coverage |
|-------------|--------------------------------------------------------------------|------------------------------|-----------|----------------------|-------------|----------|
| Sub-clade 1 | P. protegens PGNR1                                                 | 1.96                         | 15        | 6.86                 | 871         | 75       |
|             | P. protegens BRIP                                                  | 1.12                         | 19        | 6.89                 | 701         | 44       |
|             | P. protegens K94.41                                                | 1.28                         | 17        | 6.99                 | 582         | 50       |
|             | P. protegens PF                                                    | 1.41                         | 14        | 7.07                 | 1051        | 52       |
|             | Pseudomonas sp. CMR5c                                              | 22.35                        | 44        | 6.76                 | 502         | 37       |
|             | <i>P. chlororaphis</i> subsp. <i>piscium</i> DSM21509 <sup>T</sup> | 1.35                         | 36        | 7.04                 | 414         | 51       |
|             | P. chlororaphis subsp. piscium PCL1391                             | 1.29                         | 17        | 6.86                 | 820         | 51       |
|             | <i>P. chlororaphis</i> subsp. <i>aureofaciens</i> LMG $1245^{T}$   | 1.43                         | 45        | 7.02                 | 311         | 54       |
|             | P. chlororaphis subsp. aureofaciens CD                             | 1.92                         | 32        | 6.8                  | 388         | 75       |
|             | <i>P. chlororaphis</i> subsp. <i>chlororaphis</i> LMG $5004^{T}$   | 1.13                         | 15        | 6.79                 | 875         | 44       |
| Sub-clade 2 | P. brassicacearum TM1A3                                            | 2.16                         | 29        | 6.69                 | 552         | 86       |
|             | <i>P. kilonensis</i> DSM 13647 <sup><math>T</math></sup>           | 1.60                         | 44        | 6.39                 | 281         | 66       |
|             | P. kilonensis P12                                                  | 1.98                         | 44        | 6.39                 | 277         | 81       |
|             | <i>P. thivervalensis</i> DSM 13194 <sup><math>T</math></sup>       | 1.65                         | 25        | 6.58                 | 445         | 67       |
|             | P. thivervalensis PITR2                                            | 1.75                         | 26        | 6.77                 | 661         | 68       |
|             | Pseudomonas sp. Q12-87                                             | 1.33                         | 45        | 6.30                 | 261         | 56       |
|             | Pseudomonas sp. P97.38                                             | 2.12                         | 36        | 6.06                 | 278         | 92       |
|             | <i>P.</i> corrugata DSM 7228 <sup><math>T</math></sup>             | 1.63                         | 31        | 6.13                 | 374         | 71       |
|             | Pseudomonas sp. Pf153                                              | 1.70                         | 30        | 5.98                 | 577         | 75       |
|             | Pseudomonas sp. P1.8                                               | 1.87                         | 43        | 6.36                 | 325         | 79       |
|             | Pseudomonas sp. P1.31                                              | 2.18                         | 48        | 6.27                 | 262         | 92       |
| Sub-clade 3 | <i>P. fluorescens</i> DSM $50090^{T}$                              | 1.43                         | 17        | 6.39                 | 973         | 59       |
|             | Pseudomonas sp. MIACH                                              | 1.37                         | 73        | 6.82                 | 236         | 54       |

### Supplementary Table S6. Genomic features

|              |                                               | tegens . | lomonas sp. CMR | roraphis | lomonas sp. SS101 | orescens DSM50090 <sup>T</sup> | <i>lomnas</i> sp. MIACH | ade 2  |
|--------------|-----------------------------------------------|----------|-----------------|----------|-------------------|--------------------------------|-------------------------|--------|
| Locus Tags   | Gene                                          | P. pro   | Pseud           | P.chlc   | Pseud             | P. fluc                        | Pseud                   | sub-cl |
| PCL1391_0010 | Thioesterase                                  | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0029 | Hypothetical protein                          | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0030 | Hypothetical protein                          | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0072 | RebB like protein                             | +        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0073 | Hypothetical protein                          | +        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0075 | RebB protein                                  | ÷        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0076 | RebB protein                                  | +        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0101 | Hypothetical protein                          | +        | +               | +        | +                 | +                              | -                       | -      |
| PCL1391_0108 | Cyanate transport protein CynX                | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0109 | CMP deaminase                                 | +        | +               | +        | +                 | +                              | -                       | -      |
| PCL1391_0110 | Putative ankyrin-containing lipoprotein       | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0111 | LysR family transcriptional regulator         | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0170 | Hypothetical protein                          | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0171 | Polysaccharide deacetylase                    | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0195 | Ketosteroid isomerase                         | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0279 | Histidine-specific permease                   | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0332 | Hypothetical protein                          | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0603 | Kynurenine formamidase                        | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0604 | Tryptophan 2,3-dioxygenase                    | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0605 | Aromatic amino acid transport protein AroP    | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0610 | AsnC family transcriptional regulator         | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0611 | Kynureninase                                  | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0612 | Amino acid permease                           | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0639 | Alpha/beta hydrolase                          | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0640 | membrane protein                              | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0733 | Hypothetical protein                          | +        | +               | +        | -                 | -                              | -                       | -      |
| PCL1391_0734 | Phosphatidylcholine hydrolyzing phospholipase | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391_0828 | Serine transporter                            | +        | +               | +        | +                 | +                              | -                       | -      |
| PCL1391_0938 | Signal transduction histidine kinase          | +        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0939 | Hisitdine kinase                              | +        | +               | +        | +                 | -                              | -                       | -      |
| PCL1391_0940 | LuxR family transcriptional regulator         | +        | +               | +        | +                 | +                              | +                       | -      |
| PCL1391 0949 | GNAT family acetyltransferase                 | +        | +               | +        | -                 | -                              | -                       | -      |

Supplementary Table S7. Genes specific to insecticidal strains. Locus tags (prefix PCL1391\_) and gene names are indicated for *Pseudomonas chlororaphis* subsp. *piscium* PCL1391.

| PCL1391_1183 | Membrane protein                          | + | + | + | - | - | - | - |
|--------------|-------------------------------------------|---|---|---|---|---|---|---|
| PCL1391_1217 | TonB-denpendent receptor                  | + | + | + | + | + | + | - |
| PCL1391_1218 | Iron dicitrate transporter FecR           | + | + | + | + | + | + | - |
| PCL1391_1219 | RNA polymerase sigma factor               | + | + | + | + | + | + | - |
| PCL1391_1245 | Oxidoreductase                            | + | + | + | - | - | - | - |
| PCL1391_1247 | GNAT family acetyltransferase             | + | + | + | - | - | - | - |
| PCL1391_1251 | Cyclic diguanylate phosphodiesterase      | + | + | + | - | - | - | - |
| PCL1391_1352 | Hypothetical protein                      | + | + | + | - | - | - | - |
| PCL1391_1354 | LysR family transcriptional regulator     | + | + | + | - | - | - | - |
| PCL1391_1370 | AraC family transcriptional regulator     | + | + | + | - | - | - | - |
| PCL1391_1510 | Endoribonuclease L-PSP                    | + | + | + | + | - | - | - |
| PCL1391_1588 | Probable sugar efflux transporter         | + | + | + | + | + | + | - |
| PCL1391_1733 | Extradiol dioxygenase                     | + | + | + | - | + | + | - |
| PCL1391_1817 | MFS transporter                           | + | + | + | - | - | - | - |
| PCL1391_1854 | Chitin-binding protein                    | + | + | + | + | + | - | - |
| PCL1391_1855 | Chitinase                                 | + | + | + | + | + | - | - |
| PCL1391_1901 | HxIR family transcriptional regulator     | + | + | + | + | - | + | - |
| PCL1391_1903 | Heme transporter CcmD                     | + | + | + | - | - | - | - |
| PCL1391_1904 | Hypothetical protein                      | + | + | + | - | - | - | - |
| PCL1391_1905 | Hypothetical protein                      | + | + | + | - | - | - | - |
| PCL1391_1906 | Hypothetical protein                      | + | + | + | - | - | - | - |
| PCL1391_1910 | Haloacid dehalogenase                     | + | + | + | + | + | + | - |
| PCL1391_1978 | IclR family transcriptional regulator     | + | + | + | + | - | - | - |
| PCL1391_1979 | ABC transporter substrate-binding protein | + | + | + | + | - | - | - |
| PCL1391_1980 | Amino acid ABC transporter permease       | + | + | + | + | - | - | - |
| PCL1391_1982 | FAD-dependent oxidoreductase              | + | + | + | + | - | - | - |
| PCL1391_2008 | Hypothetical protein                      | + | + | + | + | + | + | - |
| PCL1391_2011 | RNA-binding protein                       | + | + | + | - | - | - | - |
| PCL1391_2016 | RNA 3'-terminal phosphate cyclase         | + | + | + | - | - | - | - |
| PCL1391_2021 | Diaminopimelate decarboxylase             | + | + | + | - | - | - | - |
| PCL1391_2037 | Hypothetical protein                      | + | + | + | - | - | - | - |
| PCL1391_2051 | RNA polymerase subunit sigma-70           | + | + | + | + | - | + | - |
| PCL1391_2053 | Putative TonB-dependent receptor          | + | + | + | + | - | - | - |
| PCL1391_2076 | Methyl-accepting chemotaxis protein       | + | + | + | - | - | - | - |
| PCL1391_2141 | Serralysin                                | + | + | + | - | - | - | - |
| PCL1391_2164 | Alpha/beta hydrolase                      | + | + | + | - | + | + | - |
| PCL1391_2185 | GNAT family acetyltransferase             | + | + | + | + | + | - | - |
| PCL1391_2193 | ABC transporter permease                  | + | + | + | - | + | + | - |
| PCL1391_2194 | ABC transporter substrate-binding protein | + | + | + | - | + | + | - |
| PCL1391_2195 | Methionine sulfoxide reductase A          | + | + | + | - | - | - | - |
| PCL1391_2197 | RND transporter                           | + | + | + | + | + | + | - |

| PCL1391_2199 | Hypothetical protein                                          | + | + | + | + | + | + | - |
|--------------|---------------------------------------------------------------|---|---|---|---|---|---|---|
| PCL1391_2220 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2221 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2281 | Acyl-CoA dehydrogenase                                        | + | + | + | - | + | + | - |
| PCL1391_2405 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2433 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2479 | Hypothetical protein                                          | + | + | + | + | + | - | - |
| PCL1391_2481 | Na/Pi cotransporter                                           | + | + | + | - | - | - | - |
| PCL1391_2482 | Hypothetical membrane protein                                 | + | + | + | - | - | - | - |
| PCL1391_2483 | Magnesium-transporting ATPase, P-type 1                       | + | + | + | + | + | + | - |
| PCL1391_2484 | Conserved hypothetical protein                                | + | + | + | + | + | - | - |
| PCL1391_2556 | MFS transporter                                               | + | + | + | + | - | - | - |
| PCL1391_2557 | L-2-hydroxyglutarate oxidase LhgO                             | + | + | + | + | - | - | - |
| PCL1391_2558 | GntR family transcriptional regulator                         | + | + | + | + | - | - | - |
| PCL1391_2605 | AraC family transcriptional regulator                         | + | + | + | - | - | - | - |
| PCL1391_2609 | Sulfite reductase                                             | + | + | + | - | - | - | - |
| PCL1391_2610 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2645 | Polyketide cyclase                                            | + | + | + | + | + | + | - |
| PCL1391_2659 | MFS transporter                                               | + | + | + | + | - | + | - |
| PCL1391_2660 | Oxidoreductase                                                | + | + | + | - | - | - | - |
| PCL1391_2673 | Transcriptional activator protein CzcR                        | + | + | + | + | + | + | - |
| PCL1391_2790 | Glycosyltransferase                                           | + | + | + | + | + | + | - |
| PCL1391_2887 | Biopolymer transporter ExbD                                   | + | + | + | + | + | - | - |
| PCL1391_2966 | Non-hemolytic phospholipase C                                 | + | + | + | - | - | - | - |
| PCL1391_2967 | Membrane protein                                              | + | + | + | - | - | - | - |
| PCL1391_2972 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_2973 | Cyclic diguanylate phosphodiesterase                          | + | + | + | - | - | - | - |
| PCL1391_2987 | Putative ABC transporter, permease subunit                    | + | + | + | + | + | - | - |
| PCL1391_2988 | Putative ABC transporter, substrate-binding<br>protein        | + | + | + | + | + | - | - |
| PCL1391_2989 | Putative ABC transporter, ATP-binding protein                 | + | + | + | + | + | - | - |
| PCL1391_2990 | Acyl-CoA dehydrogenase                                        | + | + | + | + | + | - | - |
| PCL1391_2992 | AraC family transcriptional regulator                         | + | + | + | + | + | - | - |
| PCL1391_3032 | Aminotransferase                                              | + | + | + | - | + | + | - |
| PCL1391_3062 | Amino acid transporter                                        | + | + | + | - | - | - | - |
| PCL1391_3089 | MFS transporter                                               | + | + | + | - | - | - | - |
| PCL1391_3117 | 4-Hydroxyphenylacetate 3-monooxygenase<br>oxygenase component | + | + | + | - | - | - | - |
| PCL1391_3126 | (R,R)-Butanediol dehydrogenase                                | + | + | + | - | - | - | - |
| PCL1391_3130 | Hypothetical protein                                          | + | + | + | - | + | + | - |
| PCL1391_3144 | Hypothetical protein                                          | + | + | + | - | - | - | - |
| PCL1391_3145 | LysR family transcriptional regulator                         | + | + | + | + | + | + | - |

| PCL1391_3234 | Transporter                                          | + | + | + | - | - | - | - |
|--------------|------------------------------------------------------|---|---|---|---|---|---|---|
| PCL1391_3422 | Hypothetical protein                                 | + | + | + | + | + | + | - |
| PCL1391_3423 | Conserved hypothetical protein                       | + | + | + | + | + | + | - |
| PCL1391_3454 | Response regulator FitH                              | + | + | + | - | - | - | - |
| PCL1391_3455 | Transcriptional regulator FitG                       | + | + | + | - | - | - | - |
| PCL1391_3456 | Sensor histidine kinase FitF                         | + | + | + | - | - | - | - |
| PCL1391_3457 | Channel protein FitE                                 | + | + | + | - | - | - | - |
| PCL1391_3458 | Cytotoxin FitD                                       | + | + | + | - | - | - | - |
| PCL1391_3459 | Type I secretion system ATPase FitC                  | + | + | + | - | - | - | - |
| PCL1391_3479 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_3513 | Putative glucosidase                                 | + | + | + | + | + | + | - |
| PCL1391_3514 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_3515 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_3565 | Molybdenum cofactor biosynthesis protein<br>MoaA     | + | + | + | - | - | - | - |
| PCL1391_3566 | Molybdenum cofactor biosynthesis protein B           | + | + | + | - | - | - | - |
| PCL1391_3569 | Molybdopterin synthase catalytic subunit             | + | + | + | - | - | - | - |
| PCL1391_3570 | Molybdenum cofactor biosynthesis protein<br>MoaD     | + | + | + | - | - | - | - |
| PCL1391_3571 | Molybdenum cofactor biosynthesis protein<br>MoaC     | + | + | + | - | - | - | - |
| PCL1391_3574 | Molybdopterin-dependent oxidoreductase alpha subunit | + | + | + | - | - | - | - |
| PCL1391_3575 | Cytochrome D ubiquinol oxidase subunit I             | + | + | + | - | - | - | - |
| PCL1391_3576 | Ubiquinol oxidase subunit II, cyanide insensitive    | + | + | + | - | - | - | - |
| PCL1391_3600 | TonB-denpendent receptor                             | + | + | + | + | + | + | - |
| PCL1391_3671 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_3751 | Nucleoside 2-deoxyribosyltransferase                 | + | + | + | - | - | - | - |
| PCL1391_3843 | Conserved hypothetical protein                       | + | + | + | + | + | - | - |
| PCL1391_3855 | DNA polymerase subunit beta                          | + | + | + | + | + | + | - |
| PCL1391_3876 | Hypothetical protein                                 | + | + | + | + | + | + | - |
| PCL1391_3932 | HAD family hydrolase                                 | + | + | + | - | - | - | - |
| PCL1391_3935 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_3937 | Amidohydrolase                                       | + | + | + | - | - | - | - |
| PCL1391_3989 | Methyltransferase                                    | + | + | + | - | - | - | - |
| PCL1391_4028 | Hypothetical protein                                 | + | + | + | - | - | - | - |
| PCL1391_4037 | Hemolysin secretion/activation protein, ShIB family  | + | + | + | + | + | - | - |
| PCL1391_4083 | LuxR family transcriptional regulator                | + | + | + | - | - | - | - |
| PCL1391_4176 | Glutathione S-transferase                            | + | + | + | + | + | + | - |
| PCL1391_4307 | Hypothetical protein                                 | + | + | + | + | + | - | - |
| PCL1391_4350 | AraC family transcriptional regulator                | + | + | + | - | - | - | - |
| PCL1391_4351 | Fatty acid hydroxylase                               | + | + | + | - | - | - | - |

| PCL1391_4367  | TetR family transcriptional regulator           | + | + | + | - | - | - | - |
|---------------|-------------------------------------------------|---|---|---|---|---|---|---|
| PCL1391_4386  | Lysine transporter LysE                         | + | + | + | - | - | - | - |
| PCL1391_4387  | LysR family transcriptional regulator           | + | + | + | - | - | - | - |
| PCL1391_4607  | Putative arginase                               | + | + | + | + | - | + | - |
| PCL1391_4608  | Transporter                                     | + | + | + | + | - | + | - |
| PCL1391_4609  | Transporter                                     | + | + | + | + | - | + | - |
| PCL1391_4610  | Fatty acid desaturase                           | + | + | + | - | - | ŀ | - |
| PCL1391_4611  | Structural protein MipA                         | + | + | + | + | + | + | - |
| DCI 1201 4612 | 2,3-Diketo-5-methylthio-1-phosphopentane        | + | + | + | + | + | + | - |
| FCL1391_4012  | Adenosylmethionine-8-amino-7-oxo-nanoate        |   |   |   |   |   |   |   |
| PCL1391_4613  | aminotransferase                                | + | + | + | + | + | + | - |
| PCL1391_4614  | Esterase                                        | + | + | + | + | + | + | - |
| PCL1391_4615  | Hypothetical protein                            | + | + | + | + | + | + | - |
| PCL1391_4616  | Sensor histidine kinase                         | + | + | + | + | + | + | - |
| PCL1391_4617  | Fis family transcriptional regulator            | + | + | + | + | + | + | - |
| PCL1391_4626  | 50S ribosomal protein L31                       | + | + | + | + | + | - | - |
| PCL1391_4642  | TonB-denpendent receptor                        | + | + | + | + | + | + | - |
| PCL1391_4646  | Hypothetical protein                            | + | + | + | - | - | - | - |
| PCL1391_4723  | HIT family hydrolase                            | + | + | + | - | - | - | - |
| PCL1391_4735  | Serine hydroxymethyltransferase                 | + | + | + | - | + | + | - |
| PCL1391_4798  | Hypothetical membrane protein                   | + | + | + | + | - | - | - |
| PCL1391_4800  | XRE family transcriptional regulator            | + | + | + | + | - | - | - |
| PCL1391_4801  | Histidine kinase                                | + | + | + | + | - | - | - |
| PCL1391_4891  | GNAT family acetyltransferase                   | + | + | + | - | - | - | - |
| PCL1391_4896  | D-alanyl-alanine synthetase                     | + | + | + | - | + | + | - |
| PCL1391_4904  | MFS transporter                                 | + | + | + | - | - | - | - |
| PCL1391_4905  | LysR family transcriptional regulator           | + | + | + | - | - | - | - |
| PCL1391_4907  | Short-chain dehydrogenase                       | + | + | + | + | - | - | - |
| PCL1391_4917  | Cobalt-zinc-cadmium resistance protein CzcD     | + | + | + | + | + | - | - |
| PCL1391_4925  | Acid phosphatase                                | + | + | + | + | + | + | - |
| PCL1391_4982  | Hypothetical protein                            | + | + | + | - | + | + | - |
| PCL1391_4983  | Glycosyl transferase PsIA                       | + | + | + | + | + | + | - |
| PCL1391_4985  | Glycosyl transferase PsIC                       | + | + | + | + | + | + | - |
| PCL1391_4986  | Polysaccharide biosynthesis/export protein PsID | + | + | + | + | + | + | - |
| PCL1391_4987  | Polysaccharide biosynthesis/export protein PsIE | + | + | + | + | + | + | - |
| PCL1391_4988  | glycosyl transferase PsIF                       | + | + | + | + | + | + | - |
| PCL1391_4989  | Glycosyl hydrolase PslG                         | + | + | + | + | + | + | - |
| PCL1391_4990  | Glycosyl transferase PsIH                       | + | + | + | + | + | + | - |
| PCL1391_4991  | Glycosyl transferase Psll                       | + | + | + | + | + | + | - |
| PCL1391_4992  | Membrane protein PslJ                           | + | + | + | + | + | + | - |
| PCL1391_4993  | Acetyltransferase                               | + | + | + | + | - | - | - |

| PCL1391_4994 | Membrane protein PslK                                           | + | + | + | + | + | + | - |
|--------------|-----------------------------------------------------------------|---|---|---|---|---|---|---|
| PCL1391_5052 | Hypothetical protein                                            | + | + | + | - | + | + | - |
| PCL1391_5077 | Benzoate transporter                                            | + | + | + | + | - | + | - |
| PCL1391_5099 | Hypothetical protein                                            | + | + | + | - | - | - | - |
| PCL1391_5179 | Hypothetical protein                                            | + | + | + | - | - | - | - |
| PCL1391_5182 | Copper-containing nitrite reductase                             | + | + | + | - | - | - | - |
| PCL1391_5360 | Hypothetical protein                                            | + | + | + | - | - | - | - |
| PCL1391_5397 | Aminoglycoside N(6')-acetyltransferase                          | + | + | + | - | - | - | - |
| PCL1391_5511 | Putative membrane protein                                       | + | + | + | - | - | - | - |
| PCL1391_5577 | UDP-4-amino-4-deoxy-L-arabinose<br>oxoglutarate ami-transferase | + | + | + | + | + | + | - |
| PCL1391_5659 | Membrane protein                                                | + | + | + | - | + | + | - |
| PCL1391_5765 | Hypothetical protein                                            | + | + | + | - | - | - | - |
| PCL1391_5770 | Hypothetical protein                                            | + | + | + | - | - | - | - |
| PCL1391_5773 | Membrane protein                                                | + | + | + | + | + | + | - |
| PCL1391_5799 | TraR family zinc finger protein                                 | + | + | + | + | + | - | - |
| PCL1391_5806 | Phosphoribosyl-AMP cyclohydrolase 2                             | + | + | + | - | + | + | - |

+, gene present; -, gene absent Loci shaded in grey are discussed in the text.

# References

Auch AF, von Jan M, Klenk H-P, Goeker M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. *Stand Genomic Sci* **2**: 117-134.

Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J, Zakrzewski M *et al.* (2009). EDGAR: a software framework for the comparative analysis of prokaryotic genomes. *BMC Bioinformatics* **10**: 154.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. (2011). Scaffolding pre-assembled contigs using SSPACE. *Bioinformatics* **27**: 578-579.

Boetzer M, Pirovano W. (2012). Toward almost closed genomes with GapFiller. *Genome Biol* **13**: R56.

Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J. (2010). *Pseudomonas chlororaphis* subsp. *piscium* subsp. nov., isolated from freshwater fish. *Int J Syst Evol Microbiol* **60**: 2753-2757.

Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift K, Schripsema J, Kroon B *et al.* (1998). Biocontrol by phenazine-1-carboxamide-producing *Pseudomonas chlororaphis* PCL1391 of tomato root rot caused by *Fusarium oxysporum* f. sp. *radicis-lycopersici*. *Mol Plant-Microbe Interact* **11**: 1069-1077.

Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. (2015). Phylogenomics and systematics in *Pseudomonas*. *Front Microbiol* **6**: 214.

Gupta GP, Rani S, Birah A, Raghuraman M. (2005). Improved artificial diet for mass rearing of the tobacco caterpillar, *Spodoptera litura* (Lepidoptera: Noctuidae). *Int J Trop Insect Sci* **25**: 55-58.

Jousset A, Schuldes J, Keel C, Maurhofer M, Daniel R, Scheu S *et al.* (2014). Full-genome sequence of the plant growth-promoting bacterium *Pseudomonas protegens* CHA0. *Genome Announc* **2**: e00322-00314.

Keel C, Weller DM, Natsch A, Defago G, Cook RJ, Thomashow LS. (1996). Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent *Pseudomonas* strains from diverse geographic locations. *Appl Environ Microbiol* **62**: 552-563.

King EO, Ward MK, Raney DE. (1954). 2 simple media for the demonstration of pyocyanin and fluorescin. *Journal of Laboratory and Clinical Medicine* **44**: 301-307.

Konstantinidis KT, Ramette A, Tiedje JM. (2006). The bacterial species definition in the genomic era. *Phil Trans R Soc B* **361:** 1929-1940.

Martinez-Garcia E, de Lorenzo V. (2011). Engineering multiple genomic deletions in Gramnegative bacteria: analysis of the multi-resistant antibiotic profile of *Pseudomonas putida* KT2440. *Environ Microbiol* **13**: 2702-2716. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics* **14:** 60.

Meier-Kolthoff JP, Klenk H-P, Göker M. (2014). Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. *Int J Syst Evol Microbiol* **64**: 352-356.

Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdéz E. (2012). Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus *Pseudomonas*. *Syst Appl Microbiol* **35**: 455-464.

Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena M-H, Mateos PF *et al.* (2007). Reclassification of *Pseudomonas aurantiaca* as a synonym of *Pseudomonas chlororaphis* and proposal of three subspecies, *P. chlororaphis* subsp. *chlororaphis* subsp. nov., *P. chlororaphis* subsp. aureofaciens subsp. nov., comb. nov. and *P. chlororaphis* subsp. *aurantiaca* subsp. nov., comb. nov. and *P. chlororaphis* subsp. aurantiaca subsp. nov., comb. nov. and *P. chlororaphis* subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol **57**: 1286-1290.

Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P *et al.* (2007). Characterization of CMR5c and CMR12a, novel fluorescent *Pseudomonas* strains from the cocoyam rhizosphere with biocontrol activity. *J Appl Microbiol* **103**: 1007-1020.

Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer J-M, Défago G *et al.* (2011). *Pseudomonas protegens* sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. *Int J Syst Evol Microbiol* **34**: 180-188.

Rezzonico F, Zala M, Keel C, Duffy B, Moenne-Loccoz Y, Defago G. (2007). Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? *New Phytol* **173**: 861-872.

Ruffner B, Péchy-Tarr M, Ryffel F, Hoegger P, Obrist C, Rindlisbacher A *et al.* (2013). Oral insecticidal activity of plant-associated pseudomonads. *Environ Microbiol* **15**: 751-763.

Ruffner B, Péchy-Tarr M, Höfte M, Bloemberg G, Grunder J, Keel C *et al.* (2015). Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens *Photorhabdus* and *Xenorhabdus*. *BMC Genomics* **16**: 609.

Sambrook J, Russel DW (2001). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press: New York.

Sharifi-Tehrani A, Zala M, Natsch A, Moenne-Loccoz Y, Defago G. (1998). Biocontrol of soilborne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. *Eur J Plant Pathol* **104:** 631-643.

Stutz EW, Defago G, Kern H. (1986). Naturally-occuring fluorescent pseudomonads involved in suppression of black root-rot of tobacco. *Phytopathology* **76**: 181-185.

Tambong JT, Höfte M. (2001). Phenazines are involved in biocontrol of *Pythium myriotylum* on cocoyam by *Pseudomonas aeruginosa* PNA1. *Eur J Plant Pathol* **107**: 511-521.

Venables WN, Ripley BD (2002). *Modern Applied Statistics with S*, Fourth edn. Springer: New York.