## SUPPLEMENTAL MATERIAL

# Jorgensen et al., http://www.jem.org/cgi/content/full/jem.20151613/DC1



Figure S1. Spleens from mice infected IP with control or FliC<sup>ind</sup> GFP–*S*. Typhimurium for 24 h and treated with doxycycline for 3.5 h were harvested and prepared for flow cytometry. (Related to Figs. 5, 6, and 7.) (A) Neutrophils with intracellular macrophage markers and GFP–*S*. Typhimurium (CD45<sup>+</sup> CD11b<sup>+</sup> Ly6G<sup>+high</sup> CD68<sup>+</sup> F4/80<sup>+</sup> GFP<sup>+</sup>) were identified by flow cytometry. (B) WT mice (six animals per group) were injected with 500  $\mu$ g isotype or anti-Ly6G antibodies and infected at 24 h after antibody treatment. Depletion of CD11b<sup>+</sup> Ly6G<sup>+high</sup> neutrophils was confirmed by flow cytometry.



Video 1. Soluble GFP protein is released during pyroptosis (related to Fig. 1).  $10^6$  GFP-BMMs (white pseudocolor) were treated with 3 µg/ml FlaTox in the presence of Pl (red) and imaged by live cell confocal microscopy 2 h.



Video 2. Bacteria are trapped in the pyroptotic cell corpse (related to Fig. 2).  $10^6$  WT BMMs were labeled with ER tracker green and infected with SPI1-induced mCherry–S. Typhimurium MOI 25 for 30 min, washed, and treated with 15 µg/ml gentamicin 30 min and imaged in the absence of antibiotics by live cell confocal microscopy for 2 h.

# JEM



Video 3. Macrophages phagocytose pyroptotic cell debris (related to Fig. 2).  $10^6$  WT BMMs were labeled with MitoTracker Green and treated with 3 µg/ml FlaTox. Cells were imaged by live cell confocal microscopy for 2 h.



Video 4. Macrophages phagocytose the entire pyroptotic cell corpse and trapped bacteria (related to Fig. 4).  $10^6$  WT BMMs were labeled with Dextran Alexa555 and infected with SPI1-induced GFP–*S*. Typhimurium MOI 25 30 min, washed and treated with 15 µg/ml gentamicin for 30 min, and imaged in the absence of antibiotics by live cell confocal microscopy for 2 h.



Video 5. Multiple macrophages phagocytose a piece of the pyroptotic cell corpse each (related to Fig. 4). 10<sup>6</sup> WT BMMs were labeled with MitoTracker Green and treated with 3 µg/ml FlaTox. Cells were imaged by live cell confocal microscopy for 2 h.

#### Table S1. Bacterial strains and growth conditions

| Name of strain                   | Designation                              | Culture condition in vitro                                          |                                    | Source                                                                      |
|----------------------------------|------------------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|
|                                  |                                          | Inflammasome activation                                             | No inflammasome activation         |                                                                             |
| S. Typhimurium, WT               | ATCC 14028s                              | Overnight culture 37°C, then 1:40<br>dilution 3 h 37°C, MOI 25, 2 h | Overnight culture 37°C MOI 25, 2 h | S. Miller, University<br>of Washington,<br>Seattle, WA                      |
| S. typhimurium flgB (used as WT) | 14028s <i>flgB</i> ::Tn 10               | NA                                                                  |                                    | K. Hughes, University<br>of Utah, Salt Lake<br>City, UT                     |
| S. typhimurium 1 ST-FliCind      | 14028s <i>flgB</i> ::Tn <i>10</i> pEM087 | NA                                                                  |                                    | Miao et al., 2010                                                           |
| C. rodentium                     | DBS100 ATTC 51459                        | NA                                                                  | Overnight culture 37°C MOI 25, 2 h | B. Vallance, The<br>University of<br>British Colombia,<br>Vancouver, Canada |
| L. monocytogenes, WT             | 10403S                                   | NA                                                                  | Overnight culture 30°C MOI 20, 2 h | M. Bevan, University<br>of Washington,<br>Seattle, WA                       |
| L. monocytogenes GFP             | 10403s DinIAB InIAmB, pGFP, cmR          | NA                                                                  | Overnight culture 30°C MOI 20, 2 h | Pentecost et al., 2010                                                      |
| <i>B. thailandensis</i> GFP      | E264 pBBR2-eGFP                          | NA                                                                  | Overnight culture 37°C MOI 25, 2 h | S. Miller, University<br>of Washington,<br>Seattle, WA                      |
| F. novicida, WT                  | U112                                     | NA                                                                  | Overnight culture 30°C MOI 25, 2 h | S. Miller, University<br>of Washington,<br>Seattle, WA                      |

### Table S2. Plasmids and growth conditions

| Plasmid | Resistance   | Notes                                               | Reference<br>Miao et al., 2010 |  |
|---------|--------------|-----------------------------------------------------|--------------------------------|--|
| pEM087  | Amp, Tet     | pWSK29 expressing <i>fliC fliS</i> from <i>tetA</i> |                                |  |
| pWSK129 | Kan, Tet     | Low copy vector                                     | Wang and Kushner, 1991         |  |
| pWSK29  | Amp, Tet     | Low copy vector                                     | Wang and Kushner, 1991         |  |
| mCherry | mCherry::amp | Constitutive mCherry expression                     | Drecktrah et al., 2008         |  |
| GFP     | GFP::kan     | Constitutive GFP expression                         | Valdivia and Falkow, 1997      |  |

#### REFERENCES

Drecktrah, D., S. Levine-Wilkinson, T. Dam, S. Winfree, L.A. Knodler, T.A. Schroer, and O. Steele-Mortimer. 2008. Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic. 9:2117–2129. http://dx.doi.org/10.1111/j.1600-0854.2008.00830.x

Miao, E.A., I.A. Leaf, P.M. Treuting, D.P. Mao, M. Dors, A. Sarkar, S.E. Warren, M.D. Wewers, and A. Aderem. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. *Nat. Immunol.* 11:1136–1142. http://dx.doi.org/10.1038/ni.1960

Pentecost, M., J. Kumaran, P. Ghosh, and M.R. Amieva. 2010. Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog. 6:e1000900. http://dx.doi.org/10.1371/journal.ppat.1000900

Valdivia, R.H., and S. Falkow. 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 277:2007–2011. http://dx.doi.org/10 .1126/science.277.5334.2007

Wang, R.F., and S.R. Kushner. 1991. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in *Escherichia coli*. *Gene*. 100:195–199. http://dx.doi.org/10.1016/0378-1119(91)90366-J