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1. Web Appendix A: Oracle properties of θ̂, θ̂
∗
, θ̂V , and θ̂

∗
V

Oracle properties of the adaptive elastic net estimators θ̂ and θ̂
∗

are established in Minnier and

others (2011) for an arbitrary objective function which is the sum of iid contributions from the

observations. Thus, oracle properties for these estimators in the Cox model follow once we show

that the LPL and the perturbed LPL are asymptotically equivalent to an objective function which

is the sum of iid contributions. We demonstrate this for the perturbed LPL, since the result then

holds for the standard LPL by replacing each weight Vi by weight 1. Throughout, for simplicity

of presentation, we assume no unpenalized covariates.

To demonstrate that ̂̀∗0(θ) is asymptotically equivalent to an objective function that is the

sum of iid contributions, we may follow similar arguments as given in Cai and Zheng (2013), by
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decomposing:

̂̀∗
0(θ) = n−1

n∑
i=1

Vi
∫

[θTWi − log{nΠ(0)(θ, t)}]dNi(t)

−n−1
n∑

i=1

Vi
∫

[log{nΠ̂(0)∗(θ, t)} − log{nΠ(0)(θ, t)}]dNi(t),

where Π(k)(θ, t) = E{I(X > t)eθ
TWW⊗k} is the limit of Π̂(k)∗(θ, t) = n−1

∑n
i=1 ViI(Xi >

s)W⊗k
i eθ

TWi , and for any vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT. We then use a Taylor

series approximation to rewrite the second term as∫ {
Π̂(0)∗(θ, t)−Π(0)(θ, t)

Π(0)(θ, t)

}
d

{
n−1

n∑
i=1

ViNi(t)

}
+OP∗(n−1)

= n−1
n∑

j=1

Vj
∫ {

I(Xj > t)eθ
TWj −Π(0)(θ, t)

Π(0)(θ, t)

}
dA(t) +OP∗(n−1),

where P∗ is the probability measure generated by both the observed data and V and A(t) =

E{Nj(t)}. Thus, ̂̀∗0(θ) is asymptotically equivalent to the iid sum

n−1
n∑

i=1

Vi

(∫
[θTWi − log{nΠ(0)(θ, t)}]dNi(t)−

∫
I(Xi > t)eθ

TWi −Π(0)(θ, t)

Π(0)(θ, t)
dA(t)

)
Finally, note that although Minnier and others (2011) do not explicitly address the aENET

penalty, their proof under the adaptive lasso penalty generalizes to this case.

Next, we use the same approach to establish oracle properties for the ensemble-voting-based

estimators θ̂V and θ̂
∗
V . First, let Îj be the vector indicating whether the perturbations vote the

jth variable into the model. That is, if we write q̂j = B−1
∑B

b=1 I(θ̂
∗(b)
j = 0) then Îj = I(q̂j 6 pj),

where pj = min{max(0.05, p̄j), 0.95} is the threshold parameter as defined in section 2.5. Note

that although pj is selected in a data-driven manner, the truncation ensures that pj ∈ [0.05, 0.95].

Since the oracle properties of θ̂
∗

ensure that q̂j → 1 for j ∈ Ac and q̂j → 0 for j ∈ A, we have

P (q̂j > pj ∀j /∈ A) > P (q̂j > 0.95 ∀j /∈ A)→ 1 and P (q̂j > pj) 6 P (q̂j > 0.05)→ 0 for any j ∈ A.

It follows that P (̂I = I0) → 1, where Î = (Î1, ..., Îp)T, I0 = (I01, ...., I0p)T and I0j = I(j ∈ Ac).

The oracle properties of θ̂V follows from similar arguments as the oracle properties of θ̂ since the

two estimators only differ by their initial estimators both of which are root-n consistent.
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To establish the properties for

θ̂
∗
V = (1 + λ∗2) argmin

θ
{−̂̀∗0V (θ) + λ∗2

pZ∑
j=1

θ2j + λ∗1

pZ∑
j=1

ŵ∗V j |θj |},

where

̂̀∗
0V (θ) = n−1

n∑
i=1

Vi∆i

[
(θ � Î)TWi − log{Π̂(0)∗(θ � Î, Xi)}

]
� represents element-wise product, ŵ∗V j = |θ̃∗V Rj |−1, and

θ̃
∗
V R = (1 + λ∗2) argmin

θ
{−̂̀∗0V (θ) + λ∗2

pZ∑
j=1

θ2j}.

Note that in each minimization, the penalization term leads us to set the jth coefficient to be 0

whenever Îj = 0. To establish that θ̂
∗
V also has oracle properties, we show again that ̂̀∗0V (θ) may

be approximated by a sum of iid terms up to OP∗(n−1). To see this, we expand:

̂̀∗
0V (θ) = n−1

n∑
i=1

Vi
∫ [

(θ � I0)TWi − log{nΠ(0)(θ � I0, s)}
]
dNi(s) (1.1)

+ {θ � (̂I− I0)}Tn−1
n∑

i=1

Vi
∫

WidNi(s) (1.2)

+ n−1
n∑

i=1

Vi
∫

[log{Π̂(0)∗(θ � Î, s)} − log{Π̂(0)∗(θ � I0, s)}]dNi(s) (1.3)

− n−1
n∑

i=1

Vi
∫

[log{Π̂(0)∗(θ � I0, s)} − log{Π(0)(θ � I0, s)}]dNi(s) (1.4)

Looking at specific terms, we see P{(1.2) + (1.3) = 0} > P (̂I − I0 = 0) → 1 and thus (1.2)

and (1.3) take value 0 with probability approaching 1. Using the same arguments as given above

for the approximation of ̂̀∗0(θ), (1.4) can be expressed as

−n−1
n∑

i=1

Vi
∫ [

I(Xi > s)e(θ�I0)
TWi −Π(0)(θ � I0, s)

Π(0)(θ � I0, s)

]
dA(s) + oP∗(n−1)

Thus, `∗0V (θ) can be written as a sum of iid up to OP∗(n−1):

n−1
n∑

i=1

Vi
∫ ([

(θ � I0)TWi − log{nΠ(0)(θ � I0, s)}
]
dNi(s)

−I(Xi > s)e(θ�I0)
TWi −Π(0)(θ � I0, s)

Π(0)(θ � I0, s)
dA(s)

)
+OP∗(n−1).
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The oracle properties of θ̂
∗
V then follows from Minnier and others (2011).

2. Web Appendix B: Weak Convergence of
√
n{Ŝ(t0;wnew)− S(t0;wnew)}

It suffices to show
√
n
{

Λ̂0(t0; θ̂)− Λ0(t0;θ0)
}

converges weakly to a Gaussian process in t0 ∈

[t1, t2]. We may expand:

√
n
{

Λ̂0(t0; θ̂)− Λ0(t0;θ0)
}

=
√
n
{

Λ̂0(t0; θ̂)− Λ̂0(t0;θ0)
}

+
√
n
{

Λ̂0(t0;θ0)− Λ0(t0;θ0)
}

= Ĥ(θ0, t0)T ·
√
n(θ̂ − θ0) +

√
n
{

Λ̂0(t0;θ0)− Λ0(t0;θ0)
}

+ oP(1)

where Ĥ(θ, t) = −
∫ t

0
Π̂(1)(θ, s)Π̂(0)(θ, s)−2dN̄(s) and Π̂(k)(θ; s) = n−1

∑n
i=1 I(Xi > s)W⊗k

i eθ
TWi .

From the oracle properties of θ̂ and θ̂V , we have |n 1
2 θ̂Ac |+ |n 1

2 θ̂VAc | → 0 and

√
n(θ̂A − θA0) =

√
n(θ̂A − θA0) = n−

1
2AA,A(θ0)−1

n∑
i=1

UAi(θ0) + oP(1),

where AA,A represents the sub-matrix of A whose rows and columns correspond to A,

Ui(θ0) =

∫ (
Wi −

Π(1)(θ, s)

Π(0)(θ, s)

)
dNi(s)−

∫ t

0

I(Xi > s)eθ
TWi

Π(0)(θ, t)Wi −Π(1)(θ, t)

Π(0)(θ, t)2
,

and A(θ) = −
∫

Π(2)(θ, t)Π(0)(θ, t)−Π(1)(θ, t)Π(1)(θ, t)T

Π(0)(θ, t)2
dA(t).

From a uniform law of large numbers (Pollard, 1990), we have the in probability convergence of

Ĥ(θ, t)→ H(θ, t) = −
∫ t

0
Π(1)(θ, s)Π(0)(θ, s)−2dA(s) uniformly in t and θ. It follows that

Λ̂0(t0; θ̂)− Λ0(t0;θ0) = HA(θ0, t0)TAA,A(θ0)−1n−1
∑n

i=1 UAi(θ0) + Λ̂0(t0;θ0)− Λ0(t0;θ0) + oP(n−
1
2 ).

From Andersen and Gill (1982)

√
n
{

Λ̂0(t0;θ0)− Λ0(t0;θ0)
}

=

∫ t0

0

dMi(s)

Π(0)(θ0, s)
+ oP(1),

where Mi(t) = Ni(t)−
∫ t

0
I(Xi > s)eθ

T
0WidΛ0(s). Therefore,

√
n{Λ̂0(t0; θ̂)− Λ0(t)} is asymptot-

ically equivalent to n−
1
2

∑n
i=1 Ui(t), which converges weakly to a mean zero Gaussian process by

a functional central limit theorem (Pollard, 1990), where

Ui(t) = HA(θ0, t)
TAA,A(θ0)−1UAi(θ0) +

∫ t

0

dMi(s)

Π(0)(θ0, s)
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Similar arguments given above and those as given in Lin and others (1994) can be used to

show that
√
n{Λ̂∗0(t0; θ̂

∗
) − Λ̂∗0(t0; θ̂)} | O converges to the same limiting distribution as that of

√
n{Λ̂0(t0; θ̂)− Λ0(t)}.

3. Web Appendix C: Additional Simulation Results for Smaller Nonzero Signals

Here, we present simulation results for the setting where h(z) includes nontrivial signals of smaller

size. Specifically, we generated the genomic covariates Z from a multivariate normal distribution

with mean 0 and compound symmetry structure with variance 1 and correlation ρ. We considered

settings with pZ = 10, 20, and 30 covariates, and correlations ρ = 0 and 0.5. The underlying

signal was linear involving only the first five covariates; the structure of this signal was h(z) =

1 · z1 + 0.8 · z2 + 0.6 · z3 + 0.4 · z4 + 0.2 · z5. For each setting, we generated survival times under

the Cox model λ(t0; z) = λ0(t) exp{h(z)}, where λ0(t) is the hazard function from a Weibull(λ =

1, k = 3). The censoring was generated from a uniform distribution with range chosen to produce

approximately 50% censoring. We considered small and moderate sample sizes (n = 200 and

n = 500). Here, we focus primarily on the two smallest signals θ04 = 0.4 and θ05 = 0.2. We

consider the same patients as before: one is the “baseline” individual with W = W(0) = 0; the

second has W = W(1) = (0, 0, 2, 2, 2, 0, . . . , 0)T; and the third is W = W(2) = (−0.5, . . . ,−0.5)T.

Bootstrap and perturbation resampling methods use B = 2000 resamples. Results presented are

based on 2000 simulations.

In Figure A1, we present the probabilities of inclusion of Z4 and Z5 in the model. We can see

that these probabilities are still near 1 when θ04 = 0.4 but range between 0.6 and 1 for θ05 = 0.2,

reflecting that the fifth variable is frequently excluded from the model even though 0.2 6= 1. The

voting procedure tends to include θ05 slightly more frequently than the initial fit.

In Figure A2, we present the biases of the aENET estimator and voting based estimator

for the zero-coefficients of Z as well as the two weak signals θ04 = 0.4 and θ05 = 0.2, and the
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empirical standard errors and estimated standard errors, and the empirical coverage levels of the

95% confidence intervals for the three methods across simulation settings. The voting method still

most accurately estimates the standard errors when the true θ0j = 0. For the moderate signal

θ04 = 0.4, the performance patterns for the different methods are similar to those presented

in the main text for the other setting. For the weakest signal θ05 = 0.2, when n = 200, the

asymptotic and voting-based confidence intervals substantially undercover, while the bootstrap

overcovers; when n = 500, the coverage levels of all three methods are more similar, but still

tend to undercover, especially with nontrivial correlation. The undercoverage we see here is

because the signal is small and the aENET method does not always successfully include the

fifth covariate and tends to produce substantial bias. These simulation results are consistent with

theoretical results about the difficulty regularization methods have of selecting and providing valid

confidence intervals for weak signals of similar magnitude of order n−
1
2 (Pötscher and Schneider,

2009; Wainwright, 2009). As we increase n to 1000, coverage improves (results not shown) – for

example, when n = 1000, ρ = 0.5, and p = 30, the asymptotic confidence interval coverage is

89%; the bootstrap coverage is 92%; and the voting-based coverage is 93%.

The confidence interval and band performances (Figures A3 and A4) are quite similar to

those in main text for the individuals W(0),W(1), and W(2). The individual W(1) would be

most impacted by our difficulty capturing the small signal θ05, and indeed the confidence interval

coverage for the asymptotic-based method does drop substantially. The bootstrap intervals remain

wide in this setting, and tend to overcover. By comparison, the confidence interval coverage for

the voting-based method demonstrates performance very similar to the coverage presented in

the main text, due to its improved ability to capture the small signal in its point estimation,

as well as its improved standard error estimation for all coefficients. This further demonstrates

the advantage of our proposed interval estimation procedures over existing methods based on

asymptotic inference or bootstrap.
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Fig. A1. Probabilities of inclusion of the jth covariate, for j = 4 and j = 5
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Fig. A2. Comparison of the standard errors, bias, and 95% confidence interval coverage of θ̂j , for true
model parameters θ0 = (1, 0.8, 0.6, 0.4, 0.2, . . . , 0). Shown are values when θ0j = 0 (with absolute bias
displayed), as well as θ04 = 0.4 and θ05 = 0.2. Bias and empirical standard errors are compared for the

base aENET fit (θ̂) and the aENET fit after the voting procedure (θ̂V ) ; the variability for the base
aENET fit may be estimated using either the bootstrap or the asymptotic method, while the variability
for the voting procedure is estimated using the resampled coefficient estimators after voting.
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Fig. A3. Under the model with θ0 = (1, 0.8, 0.6, 0.4, 0.2, . . . , 0), confidence interval coverage for t0-year

survival, and width, for three covariate levels: W (0), with all covariates 0; W (1) = (0, 0, 2, 2, 2, 0, . . . , 0);
and W (2) = (−.5, . . . ,−.5).
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Fig. A4. Under the model with θ0 = (1, 0.8, 0.6, 0.4, 0.2, . . . , 0), simultaneous confidence interval coverage

for W (0), with all covariates 0; W (1) = (0, 0, 2, 2, 2, 0, . . . , 0); and W (2) = (−.5, . . . ,−.5). Also shown are
simultaneous confidence widths at representative times
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