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APPENDIX

A. Validity of complete case analysis

Without loss of generality, we consider the cause specific hazard function for the first cause in

the complete cases, h1(t|X,Z,R = 1). This is equal to

lim
h→0

1

h
P (t 6 Y < t + h,D = 1|R = 1,X, Z, Y > t)

= lim
h→0

1

h

P (t 6 T < t + h,D∗ = 1, C > t, R = 1|X,Z)

P (R = 1, T > t, C > t|X,Z)

= lim
h→0

1

h

P (t 6 T < t + h,D∗ = 1, C > t|X,Z)

P (T > t, C > t|X,Z)
×

P (R = 1|t 6 T < t + h,D∗ = 1, C > t,X,Z)

P (R = 1|T > t, C > t,X,Z)

= lim
h→0

1

h

P (t 6 T < t + h,D∗ = 1|X,Z)P (C > t|X,Z)

P (T > t|X,Z)P (C > t|X,Z)
×

P (R = 1|T = t,D∗ = 1, C > t,X,Z)

P (R = 1|T > t, C > t,X,Z)

= lim
h→0

1

h

P (t 6 T < t + h,D∗ = 1|X,Z)

P (T > t|X,Z)
×

P (R = 1|T = t,D∗ = 1, C > t,X,Z)

P (R = 1|T > t, C > t,X,Z)

= h1(t|X,Z) ×
P (R = 1|T = t,D∗ = 1, C > t,X,Z)

P (R = 1|T > t, C > t,X,Z)
(A.1)

A complete case analysis will thus give valid inferences when the second term in the preceding

equation is equal to one. An obvious sufficient condition for this to hold is that missingness is

covariate dependent, in the sense that R ⊥⊥ (T,D∗, C)|(X,Z).

We now show that a weaker sufficient condition is that R ⊥⊥ (T,D∗)|(C,X,Z), which per-

mits missingness to depend on the time to censoring C, in addition to X and Z. To this end,

we first show that under this assumption censoring remains independent in the complete cases

((T,D∗) ⊥⊥ C|(X,Z,R = 1)), utilizing the assumption that (T,D∗) ⊥⊥ C|(X,Z):

P (T,D∗, C|X,Z,R = 1) =
P (T,D∗, C,R = 1|X,Z)

P (R = 1|X,Z)

=
P (R = 1|T,D∗, C,X,Z)P (T,D∗, C|X,Z)

P (R = 1|X,Z)

=
P (R = 1|C,X,Z)P (T,D∗|X,Z)P (C|X,Z)

P (R = 1|X,Z)

= P (T,D∗|X,Z)P (C|X,Z,R = 1)
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Using these results we then have that the second term in equation (A.1) is equal to

P (R = 1|T = t,D∗ = 1, C > t,X,Z)

P (R = 1|T > t, C > t,X,Z)
=

P (T=t,D∗=1,C>t|X,Z,R=1)P (R=1|X,Z)
P (T=t,D∗=1,C>t|X,Z)

P (T>t,C>t|X,Z,R=1)P (R=1|X,Z)
P (T>t,C>t|X,Z)

=

P (T=t,D∗=1|X,Z)P (C>t|X,Z,R=1)
P (T=t,D∗=1|X,Z)P (C>t|X,Z)

P (T>t|X,Z)P (C>t|X,Z,R=1)
P (T>t|X,Z)P (C>t|X,Z)

= 1

such that the complete case analysis is valid.

B. Multiple imputation

B.1 Gibbs sampler and prior choice

Multiple imputation as originally conceived consists of imputing missing data as draws from the

posterior distribution of the missing data given the observed. This predictive distribution is based

on a Bayesian model - i.e. a model for the full data plus specification of prior distributions for the

model parameters. Most often the required posteriors are not available in closed form. In such

cases, we can use Gibbs sampling to draw from the required posteriors, which involves repeatedly

sampling from each of the fully conditional distributions (of parameters and missing data). In the

present context, assuming independent priors for the parameters in each cause specific model,

the Gibbs sampler consists of drawing from the following distributions at each iteration:

f(βk,H0k(.)|y, d, z, xobs, xmis), k = 1, ..,K

f(φ|z, xobs, xmis)

f(xmis|y, d, z, φ, β1,H01(.), .., βK ,H0K(.))

where lower case letters denote the observed values of the corresponding random variables across

all individuals, and xobs and xmis denote the observed and current imputations of X across all

individuals.
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As typically implemented, MI algorithms make use of non-informative priors for all model

parameters. In the present context, we adopt improper flat priors for the regression coefficients

βk, k = 1, ..,K. If the cause specific baseline hazard functions are specified parametrically, then

default non-informative priors can be chosen for the corresponding parameters. Often however

one wishes to make no assumption about the baseline hazards, such that H0k(.), k = 1, ..,K are

infinite dimensional parameters.

In the simpler setting of single failure time data, Chen and others (2006) have developed

theory for the propriety of the posterior distributions for the Cox model, including where some

covariates are missing, based on using a gamma process prior for the (assumed arbitrary) cu-

mulative baseline hazard function. Based on this they developed a Gibbs sampling algorithm

for sampling from the required posterior distributions. In the same setting, Bartlett and others

(2015) recently proposed a simpler Gibbs sampling scheme, in which at each iteration, first a new

draw of β1 is sampled from a multivariate normal distribution with mean and covariance as given

by Cox’s partial likelihood. As shown by Kalbfleisch (1978), whose results were later extended

by Sinha and others (2003), this approximate posterior for β1 can be justified by assuming a

very diffuse gamma process prior on the cumulative baseline hazard. The algorithm proposed by

Bartlett and others (2015) then updates the cumulative baseline hazard by calculating the usual

Breslow estimator, conditional on the value of β1 sampled in the preceding step. This approach

thus ignores uncertainty in the cumulative baseline hazard function. Nonetheless, in simulations,

Bartlett and others (2015) obtained satisfactory confidence interval coverage for estimation of

β1.

We extend the approach described by Bartlett and others (2015) to the competing risks set-

ting. Specifically, for each k = 1, ..,K, we first draw βk from an approximate multivariate normal

posterior, with mean and covariance based on the corresponding partial likelihood. We then up-

date H0k(.) using the Breslow estimator, conditioning on the drawn value of βk. We explore the
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finite sample performance of this approach, and in particular also investigate the performance

for inferences about H0k(.), in the simulation studies.

B.2 Sampling methods

We now describe how missing values in X can be sampled, considering separately the case of

categorical covariates and non-categorical covariates.

Categorical covariates If X has a finite sample space, we can directly sample from the imputation

distribution. Specifically, let k be the constant of proportionality such that

P (X|Z, Y,D) = kf(Y,D|X,Z)P (X|Z)

Without loss of generality suppose that X has sample space {1, .., S}, such that

1 =
S∑

s=1

kf(Y,D|X = s, Z)P (X = s|Z)

Then we have

k =
1

∑S

s=1 f(Y,D|X = s, Z)P (X = s|Z)

and P (X = s′|Z, Y,D) is equal to

f(Y,D|X = s′, Z)P (X = s′|Z)
∑S

s=1 f(Y,D|X = s, Z)P (X = s|Z)

=

∏K

k=1 exp [− exp {gk(X = s′, Z, βk)}H0k(Y )] [exp {gk(X = s′, Z, βk)}]
I(D=k)

P (X = s′|Z)
∑S

s=1

∏K

k=1 exp [− exp {gk(X = s, Z, βk)}H0k(Y )] [exp {gk(X = s, Z, βk)}]
I(D=k)

P (X = s|Z)

Other covariate types More generally, rejection sampling can be used to draw from the distribu-

tion, using f(X|Z) as the proposal distribution. To use rejection sampling the ratio of the target

density to the proposal density must be bounded above, up to a constant of proportionality, by

a quantity not involving X. From equation 3.1 of the main paper, here this ratio is simply equal

to f(Y,D|X,Z).
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First suppose that D = 0, such that an individual is censored at time Y . Then we have

f(Y,D = 0|X,Z) 6 S0(Y |Z)h0(Y |Z). To sample a missing value of X∗, we sample from f(X|Z),

sample U ∼ U(0, 1), and accept X∗ if

U 6
f(Y,D = 0|X∗, Z)

S0(Y |Z)h0(Y |Z)

=

K∏

k=1

exp [− exp {gk(X∗, Z, βk)}H0k(Y )]

Now suppose that D > 0. Then we have

f(Y,D|X,Z) 6 S0(Y |Z) exp [− exp {gD(X,Z, βD)}H0D(Y )] h0D(Y ) exp {gD(X,Z, βD)}

= S0(Y |Z)h0D(Y ) exp [gD(X,Z, βD) − exp {gD(X,Z, βD)}H0D(Y )]

Differentiation with respect to gD() shows that the expression takes its maximum value when

exp {gD(X,Z, βD)}H0D(Y ) = 1, so that

f(Y,D|X,Z) 6 S0(Y |Z)h0D(Y )
exp(−1)

H0D(Y )

To sample a missing value of X∗, we sample from f(X|Z), sample U ∼ U(0, 1), and accept X∗ if

U 6 f(Y,D|X∗, Z)
exp(1)H0D(Y )

S0(Y |Z)h0D(Y )

= H0D(Y ) exp{1 + gD(X∗, Z, βD)}

K∏

k=1

exp [− exp {gk(X∗, Z, βk)}H0k(Y )]

B.3 Multiple missingness patterns

Here we describe the SMC-FCS algorithm in the case of multiple partially observed covariates

and multiple missingness patterns. For each partially observed variable Xj , we specify a model

f(Xj |X−j , Z, φj), where X−j denotes the components of X except the jth. Each iteration of the

SMC-FCS algorithm then consists of sampling the missing values in Xj , for j = 1, .., p. To impute
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the missing values in Xj we draw sequentially from:

f(β1,H01(.)|t, d, z, xobs, xmis)

...

f(βK ,H0K(.)|t, d, z, xobs, xmis)

f(φj |z, xobs, xmis)

f(xmis
j |t, d, z, x−j , φ, β1,H01(.), .., βK ,H0K(.))

where x−j denotes the current values of X−j across all individuals, which consists of observed

values and current imputed values.

C. Additional simulations

C.1 Simulation 3 - missingness dependent on failure type

In a third set of simulations (Table 1), we made values of X3 missing with probability 0.2 +

0.3D, where D = 1, 2 (failure due to cause 1, failure due to cause 2), leading to approximately

50% missing values. Such a mechanism could be induced if missingness in X3 was driven by an

unobserved baseline variable V , which itself is an independent predictor of failure type. Here

CCA is biased, since missingness is dependent on D. For the MI approaches, results were broadly

similar to the first simulation set, except that the biases of the FCS approaches were smaller,

leading to improved confidence interval coverage. Nonetheless, estimates of β13 remained biased

using FCS accounting for competing risks (both with and without the additional interaction

terms). In contrast, estimates based on SMC-FCS accounting for competing risks again led to

unbiased estimates. Interestingly, SMC-FCS treating failures from the second cause as censoring

events gave estimates for β1 with little bias, and confidence interval coverage fairly close to the

nominal level.
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C.2 Simulation 4 - covariate dependent MNAR

Table 2 shows results from simulations where X3 was made missing with probability expit(0.75X3),

resulting in a covariate dependent MNAR mechanism. As expected CCA is unbiased, whereas

the MI approaches, which assume MAR, are biased. Nevertheless, the biases in ‘SMC-FCS com-

peting’ are arguably modest, with the exception being the cumulative baseline hazard function

estimate at t = 0.5.

C.3 Simulation 5 - X3 conditionally independent of hazard for second cause of failure

Table 3 shows results from simulations where X3 was once again made missing (at random) with

probability 0.25 + 0.5X1, but with βT
2 = (β21, β22, β23) = (0.5,−1, 0), such that the partially

observed covariate X3 had no independent effect on the hazard from the second cause of failure.

As expected, the ‘FCS competing’ and ‘FCS survival’ approaches now had similar performance,

but they remained substantially biased for β13, with zero coverage of confidence intervals for this

parameter. Estimates based on ‘FCS competing int.’ as before had reduced bias, but estimates

for β13 remained materially biased, and confidence interval coverage was low. SMC-FCS allowing

for competing risks was again approximately unbiased with good confidence interval coverage,

although the estimate of H01(0.5) was biased upwards somewhat. As expected due to X3 having no

independent effect on the second cause hazard, SMC-FCS treating failures from the second cause

as censoring events led to unbiased estimates, and estimates for β23 that were more efficient than

‘SMC-FCS competing’, which here allowed for the possibility that β23 6= 0. Confidence interval

coverage for β23 from ‘SMC-FCS survival’ was above the nominal level, which is consistent with

existing theory on the performance of Rubin’s variance estimator when the imputer makes an

assumption (here that β23 = 0) that the analyst does not (Meng (1994)).
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Table 1. Mean (SD) of estimates across 1,000 simulations, with missingness dependent on failure indicator
D. CI indicates empirical coverage of nominal 95% confidence intervals

Method β11 = 1 β12 = 1 β13 = 1 β21 = 0.5 β22 = −1 β23 = 0.75 γ = 1.25 *
Mean

Full data 1.00 1.01 1.01 0.51 -1.00 0.75 1.24
Complete case 0.98 0.84 1.02 0.55 -1.38 0.86 1.85

FCS competing 0.93 0.98 0.84 0.49 -0.97 0.76 1.62
FCS compet inter 0.98 1.05 0.90 0.51 -1.03 0.76 1.35

FCS survival 0.95 1.13 0.66 0.53 -0.83 0.64 1.54
SMC-FCS competing 0.99 1.01 1.00 0.51 -0.99 0.74 1.26

SMC-FCS survival 0.95 1.00 1.05 0.80 -0.56 0.28 1.28
SD

Full data 0.13 0.14 0.07 0.11 0.11 0.05 0.26
Complete case 0.14 0.16 0.08 0.23 0.24 0.10 0.45

FCS competing 0.14 0.15 0.08 0.12 0.13 0.08 0.33
FCS compet inter 0.13 0.15 0.08 0.12 0.14 0.08 0.28

FCS survival 0.13 0.14 0.07 0.11 0.12 0.07 0.31
SMC-FCS competing 0.14 0.15 0.09 0.12 0.14 0.08 0.28

SMC-FCS survival 0.14 0.16 0.09 0.10 0.11 0.04 0.29
Coverage

Full data 96 95 93 97 95 95 94
Complete case 96 83 94 95 60 82 84

FCS competing 95 96 73 96 95 94 93
FCS compet inter 97 95 85 96 94 94 97

FCS survival 95 88 7 96 77 71 93
SMC-FCS competing 97 94 95 96 94 94 94

SMC-FCS survival 94 96 90 23 3 0 94

*γ = 100 × H01(0.5) = 1.25
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Table 2. Mean (SD) of estimates across 1,000 simulations, with missingness in X3 dependent on X3. CI
indicates empirical coverage of nominal 95% confidence intervals

Method β11 = 1 β12 = 1 β13 = 1 β21 = 0.5 β22 = −1 β23 = 0.75 γ = 1.25 *
Mean

Full data 1.00 1.02 1.00 0.51 -1.00 0.75 1.23
Complete case 1.00 1.02 1.01 0.50 -1.01 0.76 1.22

FCS competing 0.93 1.08 0.70 0.58 -0.83 0.63 1.94
FCS compet inter 0.97 1.10 0.81 0.57 -0.89 0.66 1.70

FCS survival 0.95 1.14 0.61 0.61 -0.75 0.55 1.88
SMC-FCS competing 0.99 1.06 0.95 0.57 -0.89 0.68 1.59

SMC-FCS survival 0.94 1.08 1.00 0.78 -0.57 0.33 1.43
SD

Full data 0.13 0.14 0.07 0.11 0.11 0.05 0.25
Complete case 0.18 0.18 0.10 0.16 0.17 0.08 0.39

FCS competing 0.13 0.14 0.08 0.12 0.12 0.08 0.38
FCS compet inter 0.14 0.14 0.08 0.12 0.13 0.08 0.34

FCS survival 0.13 0.14 0.07 0.12 0.11 0.07 0.37
SMC-FCS competing 0.14 0.15 0.10 0.12 0.13 0.08 0.34

SMC-FCS survival 0.15 0.15 0.10 0.10 0.10 0.04 0.31
Coverage

Full data 94 94 95 96 95 95 94
Complete case 95 95 94 96 95 95 91

FCS competing 94 93 15 91 74 67 67
FCS compet inter 96 91 51 90 86 79 88

FCS survival 94 88 2 85 50 28 71
SMC-FCS competing 94 93 89 92 88 83 92

SMC-FCS survival 91 91 94 32 3 0 96

*γ = 100 × H01(0.5) = 1.25
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Table 3. Mean (SD) of estimates across 1,000 simulations, with hazard of second cause (conditionally)
independent of X3. CI indicates empirical coverage of nominal 95% confidence intervals

Method β11 = 1 β12 = 1 β13 = 1 β21 = 0.5 β22 = −1 β23 = 0 γ = 1.25 *
Mean

Full data 1.00 1.00 1.00 0.50 -1.00 0.00 1.27
Complete case 1.00 1.00 1.01 0.51 -1.01 0.00 1.26

FCS competing 0.88 1.02 0.52 0.57 -0.94 -0.07 2.42
FCS compet inter 1.01 0.98 0.72 0.50 -1.01 0.01 1.78

FCS survival 0.88 1.03 0.52 0.57 -0.94 -0.07 2.42
SMC-FCS competing 1.03 1.00 0.99 0.50 -1.00 0.00 1.32

SMC-FCS survival 1.04 1.00 1.00 0.50 -1.00 0.00 1.29
SD

Full data 0.13 0.14 0.06 0.11 0.12 0.05 0.25
Complete case 0.20 0.19 0.10 0.18 0.17 0.06 0.38

FCS competing 0.15 0.14 0.06 0.12 0.12 0.06 0.43
FCS compet inter 0.16 0.15 0.06 0.11 0.13 0.06 0.35

FCS survival 0.15 0.14 0.06 0.12 0.12 0.06 0.43
SMC-FCS competing 0.17 0.17 0.10 0.11 0.12 0.06 0.33

SMC-FCS survival 0.17 0.16 0.09 0.10 0.11 0.04 0.31
Coverage

Full data 96 94 95 96 94 93 95
Complete case 96 94 94 94 94 94 93

FCS competing 91 96 0 92 91 80 17
FCS compet inter 97 96 17 95 95 94 87

FCS survival 90 97 0 92 92 82 18
SMC-FCS competing 95 95 96 96 94 94 94

SMC-FCS survival 94 95 95 96 96 99 94

*γ = 100 × H01(0.5) = 1.25
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