Title: Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer Disease model

Author list: Fong Sheng^{1*}, Emelyne Teo^{2*}, Ng Li Fang³, Chen Ce-Belle⁴, Lakshmi Narayanan Lakshmanan⁵, Tsoi Sau Yee³, Philip Keith Moore², Takao Inoue⁴, Barry Halliwell⁴, Jan Gruber^{3,4#}

¹Internal Medicine Residency Programme, SingHealth Group, Singapore ²NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore ³Science Division, Yale-NUS College, Singapore ⁴Department of Biochemistry, National University of Singapore, Singapore Institute of Chemical and Bioengineering, ETH Zurich, Switzerland

*Contributed equally to this work.

[#]Corresponding author. Email: <u>bchjg@nus.edu.sg</u>

Supplementary Tables

		•	Type of	
Strain	Type of expression	Location of expression	Αβ	Reference
CL2006	Constitutive	Muscle	Αβ ₃₋₄₂	Link 1995
CL4176	Inducible (by temperature up-shift)	Muscle	$A\beta_{3-42}$	Link et al. 2003
GMC101	Inducible (by temperature up-shift)	Muscle	$A\beta_{1-42}$	McColl et al. 2012
CL2355	Inducible (by temperature up-shift)	Neuron	Αβ ₃₋₄₂	Link 2005
FDX (ses25)	Constitutive	ASE (chemosensory neuron)	$A\beta_{3-42}$	Duan & Sesti 2013
UA166	Constitutive	Glutaminergic neuron	Αβ ₃₋₄₂	Treusch et al. 2012
Our strain	Constitutive	Neuron	$A\beta_{1-42}$	Fong et al. 2015

Table S1. Transgenic *C. elegans* strains expressing human Aβ

	Median LSP		Mean LSP				
Study	(days)	Log-rank test	(days)	t-test	Max LSP (days)	t-test	Ν
1	Control: 17	P<0.001	Control: 15.9	P<0.001	Control: 22.8	P<0.01	Control: 168
	Αβ: 13		Αβ: 13.4		Αβ: 19.9		Αβ: 122
2	Control: 18	P<0.001	Control: 17.4	P<0.001	Control: 25.5	P<0.001	Control: 137
	Αβ: 13		Αβ: 13.3		Αβ: 22.1		Αβ: 107
3	Control: 17	P<0.001	Control: 16.7	P<0.001	Control: 24.2	P<0.001	Control: 88
	Αβ: 12		Αβ: 12.1		Αβ: 19.1		Αβ: 88

Table S2. Summary of lifespan studies conducted.

Supplementary Figures

B) A) C. elegans Genetic Code: Sequences used in this study: Nucleotide TTT Phe 0.50 Ser 0.21 Cys 0.55 TCT TAT Tyr 0.56 TGT TTC Phe 0.50 TCC Ser 0.13 TAC Tyr 0.44 TGC Cys 0.45 ggtacc atg cat aag gtt ttg ctg gca ctg ttc ttt atc ttt TTA Leu 0.12 TCA Ser 0.25 TAA Stop 0.44 TGA Stop 0.39 ctg gca cca gca gga aca **GAT GCT** GAT GCA GAA TTT TTG Leu 0.23 TCG Ser 0.15 TAG Stop 0.17 TGG Trp 1.00 CGA CAT GAT TCA GGA TAT GAA GTT CAT CAT CAA AAA CTT 0.24 CCT Pro 0.18 CAT His 0.61 Arg 0.21 Leu CGT TTG GTG TTC TTT GCA GAA GAT GTG GGA TCA AAT AAA CTC CCC Pro His Leu 0.17 0.09 CAC 0.39 CGC Arg 0.10 GGA GCA ATT ATT GGA CTC ATG GTG GGA GGA GTT GTC СТА Leu 0.09 CCA Pro 0.53 CAA Gln 0.66 CGA Arg 0.23 ATT GCT TGA actagt 0.20 CTG Leu 0.14 CCG Pro CAG Gln 0.34 CGG Arg 0.09 Amino acid (predicted) – residues 1 - 42 of human AB ATT lle 0.53 ACT Thr 0.33 AAT Asn 0.62 AGT Ser 0.15 ATC lle 0.31 ACC Thr 0.18 AAC Asn 0.38 AGC Ser 0.10 ACA kpnI - met-his-lvs-val-leu-leu-ala-leu-phe-phe-ile-phelle 0.16 Thr 0.34 0.59 AGA Arg 0.29 ATA AAA Lys 1.00 ACG Thr 0.15 AAG 0.41 AGG Arg 0.08 ATG Met Lys leu-ala-pro-ala-gly-thr-ASP-ALA-ASP-ALA-GLU-PHE-ARG-HIS-ASP-SER-GLY-TYR-GLU-VAL-HIS-HIS-GLN-LYS-GTT Val 0.39 GCT Ala 0.36 GAT Asp 0.68 GGT Glv 0.20 LEU-VAL-PHE-PHE-ALA-GLU-ASP-VAL-GLY-SER-ASN-LYS-GTC 0.22 GCC Gly 0.12 Val Ala 0.20 GAC 0.33 GGC Asp GLY-ALA-ILE-ILE-GLY-LEU-MET-VAL-GLY-GLY-VAL-VAL-GTA 0.16 Glv 0.59 Val GCA Ala 0.31 GAA Glu 0.62 GGA ILE-ALA-stop - speI GTG Val 0.23 GCG Ala 0.13 GAG Glu 0.38 GGG Glv 0.08 Fields: Triplet | Amino acid | Fraction

C)

1	GATGCAGAAT	TTCGACATGATTCAGGATATGAAGTTCATCATCAAAAATTGGTGTTCTTT	60
1	GATGCAGAAT	ttcgacatgattcaggatatgaagttcatcatcaaaaattggtgttcttt	60
61	GCAGAAGATG	TGGGATCAAATAAAGGAGCAATTATTGGACTCATGGTGGGAGGAGTTGTC	120
61	GCAGAAGATG	togoatcaaataaaggagcaattattogactcatogtoggaggagtgtct	120
121	ATTGCTTGA	129	
121	ATTGCTTGA	129	

Figure S1. A) $A\beta_{1-42}$ nucleotide sequence used in minigene construction. Additional nucleotides, gatgct, encoding aspartate and alanine, at the N-terminus, to prevent formation of truncated $A\beta_{3-42}$. B) *C. elegans* genetic code frequency. Codon usage was optimized by using nematode codons with highest frequencies to encode the $A\beta_{1-42}$ minigene. C) Sequence alignment of DNA identity obtained from sequencing. The $A\beta$ sequence detected from the transgenic nematodes matches with the codon optimized full length $A\beta_{1-42}$ nucleotide sequence.