SUPPLEMENTARY INFORMATION

Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

Yoo Jin Oh^{1*}, Michael Hubauer-Brenner^{1,2}, Hermann J. Gruber¹, Yidan Cui³, Lukas Traxler¹, Christine Siligan¹, Sungsu Park^{3,4}, and Peter Hinterdorfer^{1,2*}

¹Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria

²Center for Advanced Bioanalysis (CBL), Gruberstrasse 40, 4020 Linz, Austria

³Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore

⁴School of Mechanical Engineering, Sungkyunkwan University, Suwon 440746, Korea

*Correspondence to <u>yoo_jin.oh@jku.at</u>, <u>peter.hinterdorfer@jku.at</u>

Figure S1| **Scheme of immobilization strategy for single molecular force spectroscopy experiments.** Tip and probe surfaces were amino-functionalized as a first step, before a flexible poly(ethylene glycol) (PEG) linker was added. In the final coupling step, proteins were bound to different end groups of the PEG linker. **a**, RGD peptide was bound to maleimide-PEF via cysteine. **b**, Fibronectin domain III (FN III) to tris-nitrilotriacetic acid (NTA)-PEG via C-terminal his₆ tag. **c**, Fibronectin (FN) to aldehyde-PEG linker via lysine residues. **d**, CsgA monomers to NTA-PEG via his₆ tag. For all fibronectin constructs (a,b,c) RGD epitopes are marked in black.

Figure S2| **Typical force-distance curves recoreded from RGD/CsgA**(+) **interactions.** Red area indicates the calculated de-adhesion work. **a**, Blue arrow shows membrane and curli fiber extension during retraction of the RGD-bound AFM tip. **b**, The grey arrow indicates a typical unbinding event between RGD and the CsgA(+) bacterial surface.