Supporting Information

Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy

Chi-Hsiu Liu¹, Zhongxiao Wang¹, Ye Sun¹, John Paul SanGiovanni², Jing Chen^{1, *}

¹Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; ²Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA,

*Corresponding author: Jing Chen, email: jing.chen@childrens.harvard.edu

Supplementary information — Additional detailed methods:

Identification of Genes Differentially Expressed in Human Retinal Specimens with Pathologic Angiogenesis of the Retinal and Choroidal Vasculature

We used extant comparative transcriptomic profiles from retinal specimens containing: 1) active and quiescent fibrovascular membranes (FVMs) donated by people with proliferative diabetic retinopathy (PDR)¹; and, 2) choroidal neovascular (CNV) membranes donated by people with neovascular age-related macular degeneration (NV AMD)² to search for overlap with constructs containing strong experimental evidence of interaction with the 17 OIR-responsive miRNAs. FVM-PDR and CNV-NV AMD candidate molecules were derived from comparison of findings from age-matched disease-free retinas. Microarray expression data were downloaded from Gene Expression Omnibus (GEO), GSE60436 and GSE29801 for PDR and AMD samples respectively.

<u>FVM-PDR</u> Specimens.¹ The PDR-related retinal transcriptome was identified through multidimensional false-discovery control procedures (FDR2D) on normalized microarray data that showed differential expression in diseased tissue at *Q*-values ≤ 0.15 . Analysis included specimens from 9 eyes (3 active FVMs, 3 inactive FVMs, and 3 healthy retinas). FVMs were classified as active if perfused preretinal capillaries existed. Inactive FVMs were defined as those with: 1) previously documented active proliferation that had regressed fully; or 2) only nonperfused, gliotic, or fibrotic vessels. The human WG-6 V3 Expression BeadChips (Illumina, San Diego, CA, USA) microarray platform was run on the 250 ng of isolated total RNA was converted to biotinylated-cRNA. Normalized values were calculated with GeneSpring GX 11.0 software (Agilent Technologies, Santa Clara, CA, USA). There were 87 and 89 respective genes expressed at significantly higher and lower levels in FVMs (vs. disease-free specimens). There were 91 and 89 respective genes with over and under expression within active (vs. inactive) FVMs¹.

<u>CNV-NV AMD Specimens</u>.² The NV AMD-related transcriptome was identified through permutation testing with the Fisher-Yates method – genes that showed FDR values ≤ 0.02 , permuted *P* values ≤ 0.1 , and fold-change ≥ 1.5 were identified as candidates for classification into NV AMD-related modules (gene groups that exhibited coordinated expression in NV AMD and functional enrichment in one or more biological processes). Analyses were conducted on normalized values reported from specimens of RPE-choroid and retina from 31 normal and 4 NV AMD human donor eyes with the Agilent Whole Human Genome 4 × 44 K *in situ* oligonucleotide array platform (G4112F, Agilent Technologies, Inc., Santa Clara, CA, USA). The NV AMD phenotype was defined as AREDS Level 4 and Rotterdam Grade 4. The comparison group had not patent cardinal features of AMD.

There were 391 and 310 respective genes of NV AMD-associated coordinated expression modules expressed at significantly higher and lower levels in the neural retina of people with CNV (vs. disease-free specimens). There were 206 and 96 respective genes with over and under expression within the RPE/choroid of people with CNV (vs. disease-free specimens)².

<u>Functional Annotation</u> were performed with GeneCodis3³ and the PANTHER Overrepresentation Test (release 20160321, http://geneontology.org/) for additional functional annotations from the Gene Ontology Consortium resource center.

Supplementary information — References:

- 1 Ishikawa, K. *et al.* Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy. *Investigative ophthalmology & visual science* **56**, 932-946, doi:10.1167/iovs.14-15589 (2015).
- 2 Newman, A. M. *et al.* Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. *Genome medicine* **4**, 16, doi:10.1186/gm315 (2012).
- 3 Tabas-Madrid, D., Nogales-Cadenas, R. & Pascual-Montano, A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. *Nucleic acids research* **40**, W478-483, doi:10.1093/nar/gks402 (2012).
- 4 Shen, J. *et al.* MicroRNAs regulate ocular neovascularization. *Molecular therapy : the journal of the American Society of Gene Therapy* **16**, 1208-1216, doi:10.1038/mt.2008.104 (2008).

Number of Supplemental Tables: 3

Supplementary information — Tables

Table S1. Enrichment Analysis of Pertinent Experimentally Verified Targets of OIR-responsive miRNAs in Biological Process

GO ID	Term	P value	Genes
GO:0007596	Blood coagulation	0.000127	FGG,ANGPT2,IRF1,MMP1,DOCK1,IGF1,SERPINE1
GO:0045944	Positive regulation of transcription from RNA polymerase II promoter	0.000152	LEF1,SOX4,IGF2,SOX2,IRF1,IGF1,ETS1
GO:0007275	Multicellular organismal development	0.001358	IGF2,SOX2,ITGB8,ANGPT2,NOTCH3,NDRG2,MNT
GO:0007165	Signal transduction	0.002269	MYO10,FGG,ANGPT2,NDRG2,RASD1,DOCK1,IGF1
GO:0008285	Negative regulation of cell proliferation	0.000148	SOX4,CDKN1A,MNT,IGF1,CDK6,ETS1
GO:0008284	Positive regulation of cell proliferation	0.000123	LEF1,SOX4,IGF2,IGF1,ETS1,CTGF
GO:0007155	Cell adhesion	0.000809	LEF1,CDH2,ITGB8,CD34,CTGF,COL5A1
GO:0006355	Regulation of transcription, DNA- dependent	0.013481	SOX4,ARID3B,IGF2,SOX2,NOTCH3,MNT
GO:0045893	Positive regulation of transcription, DNA- dependent	0.001817	LEF1,SOX4,SOX2,IGF1,ETS1
GO:0043410	Positive regulation of MAPK cascade	9.05E-05	IGF2,CDH2,SOX2,IGF1
GO:0014070	Response to organic cyclic compound	0.000346	LEF1,CDKN1A,ANGPT2,CTGF
GO:0043066	Negative regulation of apoptotic process	0.002383	LEF1,SOX4,CDKN1A,SERPINE1
GO:0007411	Axon guidance	0.003115	MYO10,COL4A2,DOCK1,COL5A1
GO:0048146	Positive regulation of fibroblast proliferation	0.000507	CDKN1A,IGF1,CDK6
GO:0001649	Osteoblast differentiation	0.000598	LEF1,IGF2,SOX2
GO:0031100	Organ regeneration	0.000902	LEF1,CDKN1A,ANGPT2
GO:0090090	Negative regulation of canonical WNT receptor signaling pathway	0.001265	LEF1,CDH2,SOX2
GO:0045766	Positive regulation of angiogenesis	0.001112	ANGPT2,SERPINE1,ETS1
GO:0009611	Response to wounding	0.001112	SOX2,ETS1,CTGF
GO:0002576	Platelet degranulation	0.001574	FGG,IGF1,SERPINE1
GO:0032355	Response to estradiol stimulus	0.001778	IGF2,ETS1,CTGF
GO:0016477	Cell migration	0.002402	CDH2,DOCK1,COL5A1
GO:0050900	Leukocyte migration	0.002388	ANGPT2,CD34,MMP1
GO:0007050	Cell cycle arrest	0.003454	CDKN1A,SOX2,CDK6
GO:0001501	Skeletal system development	0.003663	SOX4,IGF2,IGF1
GO:0030168	Platelet activation	0.009971	FGG,IGF1,SERPINE1
GO:0006366	Transcription from RNA polymerase II promoter	0.010967	IRF1,MNT,ETS1
GO:0000278	Mitotic cell cycle	0.011857	CDKN1A,CKAP5,CDK6
GO:0031017	Exocrine pancreas development	0.001174	IGF2,IGF1
GO:0021542	Dentate gyrus development	0.001191	LEF1,CDK6

KEGG ID	Pathway	P value	Genes
Kegg:05200	Pathways in cancer	4.79E-08	CDK6,LEF1,IGF1,COL4A2,ETS1,FADD,CDKN1A,MMP1
Kegg:04510	Focal adhesion	2.68E-05	DOCK1,IGF1,COL4A2,COL5A1,ITGB8
Kegg:04115	p53 signaling pathway	1.64E-05	CDK6,IGF1,SERPINE1,CDKN1A
Kegg:04514	Cell adhesion molecules	0.001443	CD34,CDH2,ITGB8
Kegg:05412	Arrhythmogenic right ventricular cardiomyopathy	0.000488	LEF1,CDH2,ITGB8
Kegg:04512	ECM-receptor interaction	0.000636	COL4A2,COL5A1,ITGB8
Kegg:05215	Prostate cancer	0.000639	LEF1,IGF1,CDKN1A
Kegg:05218	Melanoma	0.000516	CDK6,IGF1,CDKN1A
Kegg:05214	Glioma	0.00047	CDK6,IGF1,CDKN1A
Kegg:04610	Complement and coagulation cascades	0.008789	FGG,SERPINE1
Kegg:05160	Hepatitis C	0.02032	CDKN1A,IRF1
Kegg:05410	Hypertrophic cardiomyopathy	0.011109	IGF1,ITGB8
Kegg:04974	Protein digestion and absorption	0.010789	COL4A2,COL5A1
Kegg:04810	Regulation of actin cytoskeleton	0.045826	DOCK1,ITGB8
Kegg:04320	Dorso-ventral axis formation	0.001463	ETS1,NOTCH3
Kegg:05414	Dilated cardiomyopathy	0.011508	IGF1,ITGB8
Kegg:05219	Bladder cancer	0.004026	CDKN1A,MMP1
Kegg:04110	Cell cycle	0.01835	CDK6,CDKN1A
Kegg:05222	Small cell lung cancer	0.010918	CDK6,COL4A2
Kegg:05142	Chagas disease (American trypanosomiasis)	0.013435	SERPINE1,FADD
Kegg:05220	Chronic myeloid leukemia	0.0102	CDK6,CDKN1A
Kegg:05146	Amoebiasis	0.013435	COL4A2,COL5A1

Table S2. Enrichment Analysis of Pertinent Experimentally Verified Targets of OIR-responsive miRNAsin Kyoto Encyclopedia of Genes and Genomes (KEGG) database

Time Point	P15 (Shen et al. ⁴)	P17		
Mouse Strain	C57BL/6	C57BL/6J		
Platform/Supplier of Array	LC Sciences Microarray Service	Affymetrix GeneChip miRNA 2.0 array		
Up-regulated miRNA	miR-451	miR-351		
	miR-214	miR-762		
	miR-424	miR-210		
	miR-199a	miR-145		
	miR-146	miR-486		
	miR-106a	miR-339		
	miR-350	miR-34c		
	miR-210	miR-155		
Down-regulation miRNA	miR-184	miR-129-5p		
	miR-31	miR-150		
	miR-150	miR-375		
	miR-409	miR-203		
	miR-375	miR-129-3p		
	miR-129-5p	miR-449a		
	miR-124a	miR-383		
	miR-29a	miR-1907		
	miR-129-3p	miR-409		

Table S3. Expression of Selected Retinal miRNAs at Different Time Points in the Mouse OIR model