Supporting Information

South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase

Kiran S. Toti, Danielle Osborne, Antonella Ciancetta, Detlev Boison, Kenneth A. Jacobson*

Contents:

Synthesis of intermediate 24	S2-6
An alternate route to intermediate 51	S7-8
LCMS analysis of compound 30 as substrate/inhibitor	S9-13
Molecular modeling	S14-19
Off-target activity of compounds 38a and 55 at 5-HT (serotonin) receptor	S20-21
NMR, HRMS and purity spectra of the final compounds	S22-72

A modification of the previously reported route^[1,2] to intermediate **24** was devised in order to achieve a larger scale preparation. The major modification over the previously reported route was the use of acetone cyanohydrin/ LiH combination in place of lithium cyanide in a synthetically challenging 10th step. This led to a considerably higher ratio of product to byproduct for this step and resulted in the key intermediate **24** with 0.04% overall yield over 16 steps. The yield was largely limited by the low yield of the isopropylidene isomerization in step h, which was only 11% (barring that the total yield would be 0.34%). Other contributing low yield steps were d, f, g and n. An improvement would greatly increase the global yield and hence, further optimization may be needed before adapting this route to a production process.

Scheme S1: Synthesis of intermediate 24.

Reagents and conditions: (a) acetone, MeOH, HCl, overnight, rt, 91%; (b) PPh₃, I₂, imidazole, CH₃CN, toluene, 70 °C, 1 h, 85%; (c) Zn, MeOH, 60 °C, 20 min, 83%; (d) N₂CHCO₂Et, SnCl₂, CH₂Cl₂, 0 °C, 30 min, 38%; (e) TsN₃, CH₃CN, TEA, 0 °C, 30 min, 99%; (f) CuI, toluene, 80-83 °C, 36 h, 40%; (g) NaBH₄, EtOH, 15 °C, 1 h, 48%; (h) TFA, acetone, 22-25 °C, 40 h, 11%; (i) Tf₂O, pyridine, CH₂Cl₂, 0 °C, 30 min; (j) LiH, DMF, CH₂Cl₂, 75%, often lower yield, produces side product **18**; (k) H₂/Pd/C, MeOH, HOAc, 25 °C, 2 h, 79%; (l) NaBH₄, MeOH, rt, 30 min, 62%; (m) TBDPSCl, imidazole, DMF, 25 °C, overnight, 62%; (n) NaOH, 80 °C, 2 h, 48%; (o) (PhO)₂P(O)Cl, DIPEA, NaN₃, acetone, 22-25 °C, 30 min, 91%; (p) benzene, THF, H₂O, 30 min, rt, 74%.

$[(4R, 6R)-6-Methoxy-2, 2-dimethyl-tetrahydro-2H-furo [3, 4-d] [1, 3] dioxol-4-yl] methanol \label{eq:constraint} and \la$

(8). Into a 20-L 4-necked round-bottom flask purged and maintained with an inert

atmosphere of nitrogen, was placed D-ribose **7** (2.00 kg, 13.32 mol, 1.00 equiv.), acetone (4.00 L), 2.2-dimethoxypropane (4.00 L) and methanol (4.00 L). The reaction mixture was cooled to 0 °C and added a saturated solution of hydrogen chloride in methanol (0.80 L) dropwise with stirring. The resulting solution was stirred overnight at room temperature. The *p*H was adjusted to 7 with aqueous NaHCO₃ and stirred for additional 40 min. The solids were removed by filtration, and the filtrate was concentrated under vacuum. The residue after concentration was dissolved in ethyl acetate (24 L) and washed with brine (24 L). The aqueous phase was extracted with ethyl acetate (12 L x 2) and the combined organic layer was dried over anhydrous sodium sulfate. The drying agent was filtered off and the filtrate concentrated under vacuum to give title compound as yellow oil. A total of 13 batches (26 kg) resulted in 32.5 kg of the title compound with 91% average yield.

(4S,6R)-4-(Iodomethyl)-6-methoxy-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxole

(9). Into a 20-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 8 (1.60 kg, 7.83 moles, 1.00 equiv.), imidazole (0.80 kg, 11.74 moles, 1.50 equiv.), toluene (8.00 L), CH₃CN (2.00 L) and the mixture was stirred for 30 min. This was followed by the addition of PPh₃ (2157 g, 8.22 moles, 1.05 equiv.) portion wise with stirring and then at 40 °C was added I₂ (2381 g, 9.41 moles, 1.20 equiv.) in several batches with stirring. The reaction mixture was stirred at 70 °C for 1 h in an oil bath and then cooled to 0 °C with an ice/salt bath. The solids formed were removed by filtration and the filtrate was concentrated under vacuum. The residue was treated with hexane (32 L) and the solids formed were filtered off. Concentration of the filtrate under vacuum gave the title compound as yellow oil. A total of 20 batches (32.5 kg) resulted in 42.4 kg of the required product in 85% average yield.

5-Ethenyl-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (10). Into a 20-L 4-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed **9** (3.28 kg, 10.44 moles, 1.00 equiv.) and methanol (8.00 L). This was followed by the addition of Zn (497 g, 7.65 moles, 1.20 equiv.) in several batches. The reaction solution was stirred at 60 °C for 20 min in a hot bath. The solids were removed by filtration, and the filtrate was concentrated under vacuum. The residue was diluted with water (12 L) and the solids were filtered off. The filtrate was extracted with ethyl acetate (12 L). The organic layer was washed with brine (15 L), dried over anhydrous sodium sulfate and concentrated under vacuum. The resulting residue was treated with 6 L of hexane and the solids were filtered off. The filtrate was concentrated under vacuum to afford title compound as brown oil. A total of 13 batches (42.4 kg) resulted in 14.77 kg of the desired product in 83% average yield.

Ethyl 3-(5-ethenyl-2,2-dimethyl-1,3-dioxolan-4-yl)-3-oxopropanoate (11). Into a 20-L 4necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed **10** (1200 g, 7.68 moles, 1.00 equiv.), dichloromethane (2.40 L), stannous chloride (175 g, 0.923 moles, 0.12 equiv.) sequentially. At 0 °C was added with stirring, a solution of ethyl 2-diazoacetate (701.5 g, 6.15 moles, 0.80 equiv.) in dichloromethane (9.60 L) dropwise over 3h. The reaction mixture was allowed to warm to room temperature in 30 min and concentrated under vacuum. The product was diluted with of hexane (4.8 L), stirred at 0 °C for 30 min, solids were removed by filtration, and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:60 \rightarrow 1:30). A total of 11 batches (14.77 kg) resulted in 7.81 kg (38%) of the title compound as a yellow oil.

Ethyl 2-diazo-3-(5-ethenyl-2,2-dimethyl-1,3-dioxolan-4-yl)-3-oxopropanoate (12). Into a 20-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 11 (2.00 kg, 8.26 moles, 1.00 equiv.), MeCN (10 L) and tosyl azide (1628 g, 8.26 moles, 1.00 equiv.). Followed by at 0 °C, was added TEA (1669 g, 16.49 moles, 2.00 equiv.) dropwise with stirring. The reaction mixture was stirred for 30 min at 0 °C and then allowed to attain room temperature in 30 min. The reaction mixture was concentrated under vacuum and the residue purified by silica-gel column chromatography (ethyl acetate/petroleum ether, 1:60 \rightarrow 1:15). A total of 4 batches (7.81 kg) resulted in 8.9 kg (99%) of the title compound as a yellow oil.

Ethyl (1R,4R)-8,8-dimethyl-5-oxo-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-4-carboxylate (13). Into a 2-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 12 (200 g, 0.745 moles, 1.00 equiv.), Toluene (2 L) and cuprous iodide (7.1 g, 37.28 mmol, 0.05 equiv.). The flask was evacuated and flushed three times with hydrogen, followed by flushing with nitrogen. The resulting solution was stirred at 80-83 °C for 36 h. The reaction mixture was subjected to filtration and the filtrate concentrated under reduced pressure. The residue was applied onto a silica-gel column and eluted with ethyl acetate/petroleum ether (1:15 \rightarrow 1:8). A total of 45 batches (8.9 kg) resulted in 3.2 kg (40%) of the title compound as a yellow oil.

Ethyl (1R,4R)-5-hydroxy-8,8-dimethyl-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-4carboxylate (14). Into a 20-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 13 (1.6 kg, 6.66 mol, 1.00 equiv.), ethanol (15.00 L) and then, at 0-10 °C was added NaBH₄ (253 g, 6.69 mol, 1.00 equiv.) in portions. The resulting solution was stirred for 1 h at 15 °C. The reaction was then quenched by the addition of 2 L of acetone and stirred for 1 h. The solvent mixture was concentrated under vacuum and the residue was dissolved in ethyl acetate (8 L). The organic layer was washed trice with brine (8 L), dried over anhydrous sodium sulfate and concentrated under vacuum. The product was diluted with hexane (3.2 L) and the solids were collected by filtration. A total of 2 batches (3.2 kg) resulted in 1.542 kg (48%) of the title compound **14** as a white solid.

Ethyl (2R,5R)-5-hydroxy-8,8-dimethyl-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-2carboxylate (15). Into a 10-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 14 (300 g, 1.24 mol, 1.00 equiv.), acetone (6 L), CF₃COOH (212 g, 1.86 mol, 1.50 equiv.) sequentially and stirred at 20-25 °C for 40 h. The reaction mixture was concentrated under vacuum, the residue dissolved in DCM (10 L) and treated with 10% aqueous Na₂CO₃ until the pH = 9. The organic layer was separated, washed with brine, dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated under vacuum. The crude product was purified by re-crystallization from cyclohexane. A total of 3 batches (900 g) resulted in 100 g (11%) of the title compound 15 as a white solid.

Ethyl (2R,5R)-8,8-dimethyl-5-[(trifluoromethane)sulfonyloxy]-7,9-

dioxatricyclo[4.3.0.0^[2,4]]nonane-2-carboxylate (16). Into a 2-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed **15** (50 g, 206.38 mmol, 1.00 equiv.), dichloromethane (500 mL), Pyridine (20 g, 252.84 mmol, 1.20 equiv.), then at 0 °C was added a solution of trifluoromethanesulfonic anhydride (70 g, 248.10 mmol, 1.20 equiv.) in dichloromethane (500 mL) dropwise with stirring. After stirred for additional 30 min at 0 °C in an ice/salt bath, hexane (500 mL) was added and the solids filtered. The solids were washed with a mixture of 3:7 ethyl acetate/ petroleum ether (200 mL). The filtrate was concentrated under vacuum and diluted with 250 ml dichloromethane. The resulting solution was used directly for the next step without further purification (The reaction was repeated for 17 times).

Ethyl (2R,5R)-5-cyano-8,8-dimethyl-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-2-

carboxylate (17). Into a 3-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed LiH (2.3 g, 281.81 mmol, 1.37 equiv.), N,N-dimethylformamide (250 mL) and cooled to 0 °C. To this was added 2-hydroxy-2-methylpropanenitrile (acetone cyanohydrin, 22 g, 258.51 mmol, 1.25 equiv.) dropwise and stirred at 10-15 °C for 6 h. The suspension was filtered in to a 3-L 4-necked round-bottom flask purged and maintained under nitrogen and the solids were washed with DMF (125 mL). Into another of nitrogen, was placed the solution in the first reaction. To this filtrate at 0 °C was added a solution of **16** (77 g, 205.70 mmol, 1.00 equiv.) in dichloromethane (250 mL) dropwise with stirring. The resulting solution was stirred for 30 min at 0 °C. Ethyl acetate (1 L) was added to the reaction mixture and the organic layer was washed thrice with 700 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography using ethyl acetate/petroleum ether (1:15) as eluent. A total of 18 batches (900 g of **15**) resulted in 700 g (75%) of the title compound **17** as colorless oil.

Ethyl (2R,5S)-5-formyl-8,8-dimethyl-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-2-

carboxylate (19). Into a 2-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed **17** (50 g, 198.98 mmol, 1.00 equiv.), methanol (600 mL), water (300 mL), acetic acid (100 mL), Palladium carbon (25 g), palladium hydroxide (25 g, 178.02 mmol, 0.89 equiv.). The flask was evacuated and flushed three times with nitrogen, followed by flushing with hydrogen. The resulting solution was stirred for 2 h at 25 °C in an oil bath. The solids were filtered out and the filtrate was concentrated under vacuum. The residue was diluted with ethyl acetate (500 mL), washed with aqueous NaHCO₃ (5x300 mL) and brine (3x300 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. A total of 11 batches (550 g) resulted in 440 g (79%) of the title compound **19** as a light yellow oil.

Ethyl (2R,5R)-5-(hydroxymethyl)-8,8-dimethyl-7,9-dioxatricyclo[4.3.0.0^[2,4]]nonane-2-carboxylate (20). Into a 1-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 19 (40 g, 157.31 mmol, 1.00 equiv.) and methanol (400 mL). This was followed by the addition of NaBH₄ (9 g, 244.40 mmol, 1.50 equiv.) in portions at 0 °C and stirred for 30 min at room temperature. The reaction was then quenched by the addition of 80 mL of acetone. The resulting mixture was concentrated under vacuum and the residue was dissolved in 300 mL of ethyl acetate. The organic phase was washed with brine (2x200 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column and eluted with a gradient of ethyl acetate/petroleum ether (1:6 \rightarrow 1:3). Total of 11 batches (440 g) resulted in 176 g (40%) of the title compound **20** as a colorless oil.

Ethyl (2R,5R)-5-[[(tert-Butyldiphenylsilyl)oxy]methyl]-8,8-dimethyl-7,9-

dioxatricyclo[4.3.0.0^[2,4]]nonane-2-carboxylate (21). Into a 5-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed **20** (100 g, 390.18 mmol, 1.00 equiv.), N,N-dimethylformamide (2.5 L), Imidazole (13 g, 195.00 mmol, 0.50 equiv.) and *tert*-butyl(chloro)diphenylsilane (156 g, 567.56 mmol, 1.45 equiv.). The resulting mixture was stirred for 10 min and was added triethylamine (103 g, 1.02 mol, 2.60 equiv.) dropwise with stirring. The resulting solution was stirred for overnight at 25 °C. The reaction mixture was diluted with 6 L of 1:5 ethyl acetate/petroleum ether. The resulting mixture was diluted with 6 L of 1:5 ethyl acetate/petroleum ether. The resulting mixture was diluted with ethyl acetate/petroleum ether (1:100 \rightarrow 1:30). This resulted in 120 g (62%) of the title compound **21** as a colorless oil.

(2R,5R)-5-[[(tert-Butyldiphenylsilyl)oxy]methyl]-8,8-dimethyl-7,9-

dioxatricyclo[4.3.0.0^[2,4]]nonane-2-carboxylic acid (22). Into a 5-L 4-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 21 (100 g, 202.14 mmol, 1.00 equiv.) and methanol (2 L). This was followed by a solution of NaOH (16 g, 400.03 mmol, 1.98 equiv.) in water (400 mL). The resulting solution was stirred for 2 h at 80 °C in an oil bath. The resulting mixture was concentrated under vacuum. The residue was diluted with 2 L of H₂O. The *p*H was adjusted to 4-5 with HCl (5 M aqueous). The product was extracted in dichloromethane (2x2 L) and the combined organic layer was washed with water (3 L), dried over anhydrous sodium sulfate, and concentrated under vacuum. This resulted in 45 g (48%) of the title compound **22** as a brown solid.

(2R,5R)-5-[[(tert-Butyldiphenylsilyl)oxy]methyl]-8,8-dimethyl-7,9-

dioxatricyclo[4.3.0.0^[2,4]]nonane-2-carbonyl azide (23). Into a 5-L 4-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 22 (104 g, 222.9 mmol, 1.00 equiv.), acetone (2.0 L) and DIPEA (35.0 g, 270.8 mmol, 1.20 equiv.). This was followed by the addition of diphenylphosphory chloride (DPCP, 72 g, 267.7 mmol, 1.20 equiv.). The resulting mixture was stirred for 30 min at room temperature. To this was added a solution of NaN₃ (19 g, 300.00 mmol, 1.33 equiv.) in water (300 mL). The resulting solution was stirred for 30 min at 20-25 °C and concentrated under vacuum. The residue was diluted with 500 mL of H₂O and the product was extracted in dichloromethane (2x300 mL). the organic layers were combined, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:30). This resulted in 100 g (91%) of the title compound as a colorless oil.

(2R,5R)-5-[[(tert-Butyldiphenylsilyl)oxy]methyl]-8,8-dimethyl-7,9-

dioxatricyclo[4.3.0.0^[2,4]]nonan-2-amine (24). Into a 5-L 4-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 23 (100 g, 203.40

mmol, 1.00 equiv.) and benzene (2.5 L). The resulting mixture was stirred at 80 °C for 5 h. Then the mixture was concentrated under vacuum. The residue was dissolved in oxolane (5 L) and poured in a 5-L 4-necked round-bottom flask containing a solution of NaOH (160 g, 4.00 mol, 1.00 equiv.) in water (2 L) with vigorous stirring. After stirred for 30 min at room temperature, the volatiles were removed under vacuum. The residue was diluted with 3 L of ethyl acetate and the organic phase was washed with 2x2 L of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column and the products eluted with ethyl acetate/petroleum ether (1:8 \rightarrow 1:3). This resulted in 66 g (74%) of the title compound **24** as a brown oil.

Scheme S2: An alternate route to intermediate 51.

Reagents and Conditions: (a) anhydrous CH₂Cl₂, CF₃SO₃H, rt, 5h, quantitative; (b) anhydrous THF,DIBAL-H, -78 °C, 3h, 53%; (c) anhydrous CH₂Cl₂, DMAP, imidazole TBDPS-Cl, rt, 18h, 60%.

The compound mixture SI-1,2 was synthesized following the reported protocol.^[3]

(3aR,3bR,4aS,5S,5aS)-3b-(hydroxymethyl)-2,2-

dimethylhexahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxol-5-ol (**SI-3**): The mixture of compounds **SI-1** and **SI-2** (25 mg, 0.103 mmol) was dried by chasing with anhydrous toluene (2x2mL) and desolved in anhydrous THF (1 mL). DIBAL-H (1M in toluene, 0.83 mL, 0.825 mmol) was added drop wise at -78 °C and stirred at this temperature for 3h. The reaction was

quenched by adding saturated Rochelle salt solution (2 mL) and stirred at rt for 30 min. Products were extracted in 10% isopropyl alcohol in chloroform (10x10 mL), combined , dried over anhydrous Na₂SO₄, evaporated and the residue purified by silica-gel flash chromatography to afford **SI-1** (9 mg, 35%, R_f-0.8); **SI-4** (3 mg, 9%, R_f-0.65); **SI-5** (~1 mg as a mixture with SI-4, R_f-0.60); **SI-3** (11 mg, 53%, R_f-0.2); TLC eluent = ethyl acetate. Data for **SI-3**: ¹H NMR (400 MHz, CDCl₃) δ 4.93 (dt, *J* = 1.2, 6.5 Hz, 1H), 4.62 – 4.47 (m, 2H), 3.68 (d, *J* = 11.5 Hz, 1H), 3.50 (d, *J* = 11.5 Hz, 1H), 2.34 (s, 2H), 1.78 (dtd, *J* = 1.2, 4.7, 9.2 Hz, 1H), 1.53 (s, 3H), 1.28 (s, 3H), 1.18 (t, *J* = 4.9 Hz, 1H), 0.65 (ddt, *J* = 1.1, 5.3, 8.9 Hz, 1H).

(3aR,3bR,4aS,5S,5aS)-3b-(((tert-butyldiphenylsilyl)oxy)methyl)-2,2-

dimethylhexahydrocyclopropa[3,4]cyclopenta[1,2-d][1,3]dioxol-5-ol (**51**): Compound **SI-3** (37 mg, 0.185 mmol) was dissolved in anhydrous CH₂Cl₂ (1 mL). To this was added Imidazole (25 mg, 0.37 mmol), DMAP (5 mg, 0.037 mmol) and TBDPS-Cl (48 μ L, 0.185 mmol) sequentially, and stirred at rt for 18h. Solvent was evaporated under reduced pressure and the residue purified by silica-gel flash column chromatography to afford desired product **51** as a white foam (50 mg, 60%, R_f-0.3; TLC eluent = 20% ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 4H), 7.47 – 7.34 (m, 6H), 5.01 (dd, *J* = 1.2, 6.9 Hz, 1H), 4.55 (td, *J* = 0.8, 6.9 Hz, 1H), 4.50 – 4.43 (m, 1H), 4.08 (d, *J* = 11.0 Hz, 1H), 3.29 (d, *J* = 11.0 Hz, 1H), 2.19 (s, 1H), 1.65 – 1.58 (m, 1H), 1.54 (s, 3H), 1.31 (s, 3H), 1.09 (t, *J* = 4.9 Hz, 1H), 1.06 (s, 9H), 0.54 (ddt, *J* = 1.2, 5.2, 8.8 Hz, 1H).

References:

- 1. Joshi, B.V.; Melman, A.; Mackman, R.L.; Jacobson, K.A. Synthesis of ethyl (1*S*,2*R*,3*S*,4*S*,5*S*)-2,3-*O*-(isopropylidene)-4-hydroxy-bicyclo[3.1.0]hexane-carboxylate from L-ribose: A versatile chiral synthon for preparation of adenosine and P2 receptor ligands. *Nucleos. Nucleot. Nucleic Acids* **2008**, *27*, 279-291.
- 2. Melman, A.; Zhong, M.; Marquez, V.E.; Jacobson, K.A. Synthesis of enantiomerically pure (S)-methanocarbaribo uracil nucleoside derivatives for use as antiviral agents and P2Y receptor ligands. *J. Org. Chem.* **2008**, *73*, 8085-8088.
- Santhosh Kumar, T.; Zhou, S-Y.; Joshi, B. V.; Balasubramanian, R.; Yang, T.; Liang, B. T.; Jacobson, K. A. Structure–Activity Relationship of (N)-Methanocarba Phosphonate Analogues of 5'-AMP as Cardioprotective Agents Acting Through a Cardiac P2X Receptor. J. Med. Chem. 2010, 53, 2562-2576.

Table S1. Parameters considered for the selection of a representative trajectory among three replicas: protein alpha carbon atoms (C α) average RMSD, ligand average RMSD/RMSF, and slope of the dynamic scoring function. RMSD and RMSF values are in Å and the wDSF_{tot} is adimensional.

		1c		30			57		
	RUN1	RUN2	RUN3	RUN1	RUN2	RUN3	RUN1	RUN2	RUN3
Ca RMSD	1.90	2.01	2.81	3.95	2.37	2.21	3.78	2.19	1.74
Ligand RMSD	0.95	1.07	1.24	1.97	0.88	1.00	1.35	0.99	0.81
Ligand RMSF	0.52	0.79	0.58	1.02	0.61	0.68	0.94	0.75	0.55
wDSF _{tot} (slope)	-119.36	-112.52	-88.37	-71.13	-162.32	-125.98	-102.01	-131.258	-154.16

		34		55			1 a		
	RUN1	RUN2	RUN3	RUN1	RUN2	RUN3	RUN1	RUN2	RUN3
Ca RMSD	2.31	1.98	3.86	1.98	1.77	2.70	4.21	2.36	3.16
Ligand RMSD	1.36	1.63	2.22	1.31	1.13	1.50	1.65	0.93	1.18
Ligand RMSF	0.68	0.81	0.97	0.85	0.68	0.93	0.87	0.89	0.75
wDSF _{tot} (slope)	-69.98	-61.36	-42.49	-74.76	-88.98	-76.00	-83.61	-163.90	-117.76

Figure S2. Upper panel: IE profile obtained during 60 ns of MD simulations of the hAK in complex with **1c** starting from the X-Ray structure. The electrostatic (IEele) and van der Waal (IevdW) contributions and the total IE (IEtot) are represented as blue, green and pink lines, respectively. IE values are in Kcal/mol. Lower panel: selected representative ligand conformations adopted during the MD simulation: *i*) C1'-exo, *ii*) C2'-endo, and *iii*) C3'-endo conformations.

Figure S3. IE profiles during 30 ns of MD simulations of the hAdK in complex with **34** and **55** starting from the docking poses. The electrostatic (IE_{ele}) and van der Waals (IE_{vdW}) contributions and the total IE (IE_{tot}) are represented as blue, green and pink lines, respectively. IE values are in Kcal/mol.

Figure S4. Panel A: Superimposition between X-Ray protein structures of the hAK in the closed (PDB ID: 216A, gray ribbons) and open conformation (PDB ID: 216B, light green ribbons). Panels B-F: superimposition of MD average protein structures obtained after 30 ns of MD simulation of hAK in complex with **1c** (B, pink ribbons), **30** (C, yellow ribbons), **57** (D, green ribbons), **34** (E, cyan ribbons), and **55** (F, orange ribbons) with the starting X-Ray protein structure in the closed conformation (PDB ID: 216A, gray ribbons).

Figure S5. Panel A: Docking pose of **1a** in complex with the closed form of hAK (PDB ID: 2I6A) obtained after IFD. Ligand and side chains of residues important for ligand recognition are reported as line and sticks, respectively. H-bonds are pictured as yellow dashed lines, whereas π - π stacking interactions as blue dashed lines with the centroids of the aromatic rings displayed as cyan spheres. Nonpolar hydrogen atoms are omitted. Panel B: superimposition of the MD average protein structure obtained after 30 ns of MD simulation of hAK in complex with **1a** (magenta ribbons) with the starting X-Ray protein structure in the closed conformation (PDB ID: 2I6A, gray ribbons).

Figure S7. Off-target activities

K_i determinations and binding profiles in a broad screen of receptors and channels were generously provided by the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP web site http://pdsp.med.unc.edu/ and click on "Binding Assay" or "Functional Assay" on the menu bar.

Radioligand binding inhibition by compound **38a** (MRS4203) at the 5HT₇R:

Radioligand binding inhibition by compound **55** (MRS4380) at the 5HT_{2B}R:

4Tolerance = 25.0 mDa / DBE: min = -50.0, max = 500.0 SElement prediction: Off Minimum: Maximum: Elements Used: C: 0-100 H: 0-200 N: 3-3 O: 0-12 Monoisotopic Mass, Even Electron lons 106 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass) Single Mass Analysis Elemental Jomposition Report 421.9771 Mass Number of isotope peaks used for i-FIT = 3 kst-12dec14-1054 85 (1.572) Cn (Cen, 5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00); Sm (SG, 3x5.00) 12-Dec-2014 100-0-14 195.0 %-395.3 421.9768 421.9827 421.9675 421.9921 421.9921 421.9616 421.9980 421.9957 Calc. Mass 399.2 401.3 404.0 400.0 405.0 $\begin{array}{c} 0.3\\ -5.6\\ 9.6\\ -15.0\\ 15.5\\ -20.9\\ 21.4 \end{array}$ mDa 25.0 408.4409.4411.4 415.3 418.3419.3 CI: 1-1 I: 1-1 410.0 0.7-13.3 22.8 -35.5 36.7 -49.5 50.7 10.0 PPM 7.5 -1.5-5.511.53.52.512.5-50.0 415.0 DBE HRMS: Compound 28 2.5 32.6 32.6 9.3 9.3 21.8 22.3 15.7 1-FIT 420.0 422.0 423.0 424.0 425.0 425.0 C13 C2 C2 C17 C10 C16 Formula H14 H18 H18 H14 H14 H14 H14 H18 H10 430.3431.4 432.3 43 N3 N3 N3 N3 N3 430.0 08 06 05 05 с с с г с с с 435.0 н н н н н 437.3439.4441.4443.4 بلعمديا ليديدي بإمير 440.0 445.0 447.3 450.4 454.4 455.3457.3 458.3 450.0 455.0 TOF MS ES+ 1.23e+003 Page 1 Data File C:\CHEM32\1\DATA\KIRAN\MRS4199000003.D Sample Name: MRS4199

```
______
Acq. Operator
               : KIRAN
Acq. Instrument : Instrument 1
                                                 Location : Vial 1
Injection Date : 9/22/2015 4:19:44 PM
                                                      Inj: 1
                                               Inj Volume : 10.0 µl
Acq. Method
               : C:\CHEM32\1\METHODS\KST0050.M
Last changed
               : 9/22/2015 3:56:18 PM by KIRAN
Analysis Method : C:\CHEM32\1\METHODS\KST0050.M
Last changed
               : 9/11/2015 5:21:48 PM by KIRAN
Method Info
               : ESI neg
```


Data File C:\CHEM32\1\DATA\KIRAN\MRS4199000003.D Sample Name: MRS4199

Totals : 1.09337e4 1112.66028

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak :	RetTime	Туре	Width	Area	Height	Area
#	[1111]		[[[[]]]]			5 I
1					-	
1	1.847	BB	0.0865	9.38568	1.47068	0.0239
2	2.284	BB	0.1989	156.80090	10.45777	0.3987
3	3.553	BB	0.2251	34.94678	2.35596	0.0889
4	5.373	BB	0.1808	17.27020	1.37210	0.0439
5	5.986	BB	0.1753	15.29074	1.24498	0.0389
6	8.103	BB	0.2814	58.87189	2.91746	0.1497
7	14.578	BB	0.1120	18.49826	2.50958	0.0470

S26

Sample Name: MRS4200

Area Percent Report

Sorted By		:	Sig	nal		
Multiplier		:	1.00	000		
Dilution		:	1.00	000		
Use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

1	Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
	1	0.949	BV	0.1927	164.42644	11.10704	1.0075
	2	1.432	VP	0.1759	134.14694	10.57861	0.8219
	3	4.591	BV	0.2320	386.25388	22.99147	2.3667
	4	5.208	VB	0.2501	1.56248e4	867.49646	95.7367
	5	12.611	PP	0.3581	5.10952	1.87425e-1	0.0313
	6	13.602	VB	0.2634	5.86944	2.90903e-1	0.0360

1.63207e4

912.65190

Totals :

Instrument 1 3/20/2015 6:39:28 PM KIRAN

Elemental mposition Report

Single Mass Analysis 32Tolerance = 10.0 mDa / DBE: min = -50.0, max = 500.0 SElement prediction: Off Number of isotope peaks used for i-FIT = 3

Elements Used: C: 0-100 H: 0-200 N: 4-4 O: 0-30 I: 1-1 Monoisotopic Mass, Even Electron lons 166 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

15-Jan-2015 kst-15jan15-1064 65 (1.202) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

н

Page 1

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	0.253	BV	0.1722	3.83279	3.01671e-1	0.0510
2	0.633	VP	0.1862	147.05983	10.32053	1.9583
3	0.988	VB	0.1251	54.51635	6.29256	0.7259
4	2.392	PV	0.3597	9.04957	3.38762e-1	0.1205
5	2.828	VV	0.1889	3.53570	2.33220e-1	0.0471
6	3.354	VP	0.3622	9.71599	3.90639e-1	0.1294
7	7.605	BP	0.2956	7247.27979	407.25183	96.5056
8	15.442	PP	0.5366	34.70752	9.71947e-1	0.4622

Totals :

7509.69754 426.10115

Instrument 1 3/11/2015 2:39:09 PM KIRAN

Sorted By		:	Signal					
Multiplier		:	1.0000					
Dilution		:	1.0000					
Sample Amount		:	20.00000	[ng/ul]	(not	used	in	calc.)
Use Multiplier	&	Dilution	Factor with	ISTDs				

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area १
1	0.101	BV	0.3497	10.84599	3.72472e-1	0.2151
2	0.740	VP	0.1565	58.08654	4.68872	1.1522
3	1.006	VB	0.1197	42.08311	4.92255	0.8348
4	6.013	PP	0.3598	10.67149	3.70724e-1	0.2117
5	9.126	BP	0.2917	4895.50293	269.82489	97.1093
6	15.206	PP	0.4892	24.03884	7.93965e-1	0.4768

Totals :

5041.22889 280.97331

Results obtained with enhanced integrator!

S36

Selement prediction: Off Monoisotopic Mass, Even Electron lons 211 formula(e) evaluated with 5 results within limits (up to 19 closest results for each mass) Elemental composition Report Minimum: 09-Mar-2015 Elements Used: C: 0-100 H: 0-200 N: 4-4 O: 0-30 Number of isotope peaks used for i-FIT = 3 Single Mass Analysis kst-09mar15-1081 170 (3.144) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00) 100 %-413.1884 9.3 10 0 22.5 10 0 413.2 -50.0 2.5 415.0 414.2 415.2 47.4 C14 67н N4 010

413.2 423.2 425.3 429.3 430.9 437.3 439.4 444.3447.2 448.3 456.4 457.4 459.3 464.3 467.9 469.3 475.3

				413.1977	Mass	Maximum:
	413.2036	413.1942	413.2001	413.1978	Calc. Mass	
1	-5.9	а.5	-2.4	-0.1	mDa	TO.O
1	-14.3	8.5	-5.8	-0.2	PPM	TO.0
1	6.5	-6.5	-15.5	15.5	DBE	000.0
]	28.4	0.78	141.8	9.2	1-FIT	
2	C18	C7	H37	C25	For	
1100	H29	H33	N4	H25	nula	
A 4 4	N4	N4	020	N4		
2	07	015		02		

Page 1

TOF MS ES+ 9.02e+002

Folerance = 10.0 mDa / DBE: min = -2.0, max = 1000.0 Single Mass Analysis Elementa prosition Report Elements Used: C: 0-120 H: 0-200 N: 4-4 O: 0-29 F: 1-1 Monoisotopic Mass, Even Electron lons 79 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Number of isotope peaks used for i-FIT = 3 kst-28mar16-2-020 132 (2.442) Cn (Cen,5, 50.00, Ar); Sm (SG, 1x2.00); Sb (12,5.00) 28-Mar-2016 100-

TOF MS ES+

Page 1

ы

Data File D:\Chem32\1\Data\KIRAN\New 2016-03-28 13-15-11\MRS43770000002.D Sample Name: MRS4377

	==	
Acq. Operator	:	SYSTEM Seq. Line : 2
Acq. Instrument	:	HPLC-001 Location : 2
Injection Date	:	3/28/2016 1:42:29 PM Inj: 1
		Inj Volume : 10.000 µl
Acq. Method	:	D:\Chem32\1\Data\KIRAN\New 2016-03-28 13-15-11\ANAL_A50-100_D50-00_15MIN.M
Last changed	:	3/28/2016 1:15:11 PM by SYSTEM
Analysis Method	:	D:\Chem32\1\Data\KIRAN\New 2016-03-28 13-15-11\ANAL_A50-100_D50-00_15MIN.M
		(Sequence Method)
Last changed	:	3/28/2016 2:31:40 PM by SYSTEM
		(modified after loading)
Additional Info	:	Peak(s) manually integrated
	==	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

P	eak	RetTime	Туре	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	%
-							
	1	1.080	BV	0.1362	12.33841	1.21812	0.1285
	2	1.248	VV	0.0579	1.97356	4.80871e-1	0.0205
	3	1.566	VV	0.2206	11.94476	7.01729e-1	0.1244
	4	1.754	VV	0.0722	18.90858	3.79072	0.1969
	5	1.863	VV	0.0712	4.34669	9.90358e-1	0.0453
	6	2.120	VV	0.1468	5.59086	5.49127e-1	0.0582
	7	4.056	BB	0.2552	7.72690	3.96821e-1	0.0804
	8	5.288	BV	0.1516	25.61704	2.54201	0.2667
	9	5.551	VB	0.1979	32.00481	2.36415	0.3332
	10	6.499	BV	0.1975	9152.18652	677.97644	95.2846
	11	7.227	VB	0.2075	9.54675	6.42037e-1	0.0994
	12	16.330	BV	1.5241	255.09123	1.97341	2.6558
	13	16.668	VB	0.2987	67.82568	2.94471	0.7061

Totals :

9605.10179 696.57050

Signal 2: DAD1 B, Sig=280,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.082	BB	0.1488	7.34831	6.76310e-1	0.0493
2	1.752	BV	0.0617	7.58111	1.85446	0.0508
3	1.861	VV	0.0673	1.71600	4.23582e-1	0.0115
4	2.107	VV	0.1276	3.04192	3.06993e-1	0.0204
5	4.067	BB	0.2550	7.81479	4.05261e-1	0.0524
б	5.289	BV	0.1546	21.79816	2.14364	0.1461
7	5.548	VB	0.1933	21.23089	1.59540	0.1423
8	6.499	BB	0.1979	1.47441e4	1089.60168	98.8435
9	16.331	BV	0.4889	54.32557	1.36326	0.3642
10	16.668	VB	0.3060	47.65012	2.01392	0.3194

Totals :

1.49166e4 1100.38452

	-30	_	
	-35	_	
	-40		
	-45	_	
	-50	_	
	-55	_	
	-60		
	-65		
	-70	-	
f1 (ppn	-75		
(r	-80		
	-85		
	-90		
	-95	_	
	-100		
	-105]	
	-110]	
	-115]	1.00
	-120		
	-12!		

AND MANA NAMMANANANANANA AN INN MUNIMUM MUNIMUM

MNM

F NMR: Compound 38c

Science = 10.0 mDa / DBE: min = -2.0, max = 1000.0 Science prediction: Off 77 Monoisotopic Mass, Even Electron Ions 79 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 4-4 O: 0-30 F: 1-1 Single Mass Analysis Elementa omposition Report kst-22mar16-2-022-a 134 (2.478) Cn (Cen,5, 50.00, Ar); Sm (SG, 1x2.00); Sb (12,5.00) 22-Mar-2016 Number of isotope peaks used for i-FIT = 3 100-%-387.3 390.0 391.3 392.3 395.0 399.3 401.3 400.0 405.0 407.3 411.3 410.0 413.3 415.0 414.3 419.3 421.3 427.3 429.3 420.0 425.0

431.2

finimum: Maximum:		10.0	10.0	-2.0 1000.0						
lass	Calc. Mass	mDa	PPM	DBE	1-FIT	Form	ula			
131.1887	431.1883 431.1942 431.1789	0.4 -5.5 9.8	0.9 -12.8 22.7	15.5 6.5 2.5	72.6 117.2 201.9	C25 C18 C14	H24 H28 H28	N4 N4 N4	02 07 010	ы ы 1

-----430.0

435.0 ᠇᠇ᠯ᠇ᢧᡀ᠇ᡑ᠇ᡀ᠇ᠰ᠇

440.0

445.0

450.0

455.0

460.0

465.0

470.0

475.0

432.2

433.2 439.3 441.3 446.3 447.3 448.3 453.3 457.3 459.4 460.3 467.3 468.4 469.4 473.3 476.3

TOF MS ES+ 4.83e+003

Page 1

Data File D:\Chem32\1\Data\KIRAN\New 2016-04-12 13-23-54\MRS43780000002.D Sample Name: MRS4378

==================		
Acq. Operator	: SYSTEM	Seq. Line : 2
Acq. Instrument	: HPLC-001	Location : 2
Injection Date	: 4/12/2016 1:55:53 PM	Inj: 1
		Inj Volume : 10.000 μl
Acq. Method	: D:\Chem32\1\Data\KIRAN\New 2	016-04-12 13-23-54\WASH_00_100_30min.M
Last changed	: 4/12/2016 1:23:54 PM by SYST	EM
Analysis Method	: D:\Chem32\1\Data\KIRAN\New 2	016-04-12 13-23-54\WASH_00_100_30min.M (
	Sequence Method)	
Last changed	: 4/12/2016 2:38:47 PM by SYST	EM
	(modified after loading)	
Additional Info	: Peak(s) manually integrated	
=======================================		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.360	BB	0.2613	3.02682	1.67091e-1	0.0536
2	13.163	BV	0.1737	2.59097	2.22715e-1	0.0459
3	13.404	VB	0.2569	8.46525	4.59634e-1	0.1500
4	14.404	BV	0.1536	3.41462	3.38668e-1	0.0605
5	14.742	VB	0.2678	17.57603	8.84509e-1	0.3115
6	15.606	BB	0.2095	5607.11035	390.65805	99.3784

Totals :

5642.18405 392.73067

Signal 2: DAD1 B, Sig=280,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.360	BB	0.1989	7.48898e-1	4.93802e-2	8.896e-3
2	13.161	BV	0.1784	3.14890	2.58025e-1	0.0374
3	13.384	VB	0.2254	8.71139	5.42391e-1	0.1035
4	14.417	BV	0.1416	9.39508e-1	9.82482e-2	0.0112
5	14.745	VB	0.2548	13.31102	7.09791e-1	0.1581
6	15.606	BB	0.2096	8391.75293	584.11365	99.6809

Totals : 8418.61265 585.77148

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area	Height	Area %
++ 	[]			[IIIA0 · 5]	[IIIA0]	/0
1	13.438	VV	0.2752	21.35071	1.20201	0.0976
2	15.606	VB	0.2106	2.18547e4	1512.45642	99.9024
Tota	ls :			2.18760e4	1513.65843	

Elemental (position Report

Page 1

Single Mass Analysis

SElement prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 103 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)

Elements Used: C: 0-100 H: 0-200 N: 7-7 O: 0-30 I: 1-1

16-Apr-2015 kst-16apr15-1096 145 (2.681) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

TOF MS ES+ 1.17e+003

H19 H19

Data File C:\CHEM32\1\DATA\KIRAN\MRS4220000001.D Sample Name: MRS4220

```
Acq. Operator
                : KIRAN
Acq. Instrument : Instrument 1
                                                   Location : Vial 1
                : 9/15/2015 5:14:08 PM
Injection Date
                                                        Inj :
                                                                 1
                                                 Inj Volume : 10.0 µl
                : C:\CHEM32\1\METHODS\KST0050.M
Acq. Method
                : 9/15/2015 5:11:59 PM by KIRAN
Last changed
                   (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\KST0050.M
Last changed
                : 9/11/2015 5:21:48 PM by KIRAN
Method Info
                : ESI neg
```


Data File C:\CHEM32\1\DATA\KIRAN\MRS4220000001.D Sample Name: MRS4220

Area Percent Report

Sorted By	:	Sig	nal			
Multiplier	:	1.0	000			
Dilution	:	1.00	000			
Sample Amount:		:	10.00000	[ng/ul]	(not used in	calc.)
Use Multiplier	& Dilution	Factor	with ISTDs			

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	oto
1	7.466	BB	0.1251	8.11424	1.03880	0.0741
2	19.136	BB	0.1956	1.09376e4	819.89508	99.9259

Totals: 1.09457e4 820.93388

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Pea	ak	RetTime	Туре	Width	Area	Height	Area
ŧ	ŧ	[min]		[min]	[mAU*s]	[mAU]	010
	1	1.797	BV	0.1537	58.13491	5.66764	0.1186
	2	2.196	VB	0.2647	59.57635	2.98658	0.1216
	3	3.485	BB	0.2350	58.25634	3.38218	0.1189
	4	4.307	BB	0.1250	10.46638	1.12038	0.0214
	5	5.229	BV	0.1386	27.83371	3.16424	0.0568
	6	5,473	VB	0.1771	15.56353	1,25137	0.0318

Elemental **aposition Report**

Page 1

Single Mass Analysis

SElement prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 101 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 5-5 O: 0-30 I: 1-1

17-Apr-2015 kst-17apr15-1098 382 (7.063) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

TOF MS ES+ 2.37e+003

Data File C:\CHEM32\1\DATA\KIRAN\KST1098000003.D Sample Name: KST1098

	==:		====:				===:
Acq. Operator	:	KIRAN					
Acq. Instrument	:	Instrument 1	Lo	ocation	:	Vial	1
Injection Date	:	9/23/2015 1:35:01 PM		Inj	:	1	
			Inj	Volume	:	10.0	μl
Acq. Method	:	C:\CHEM32\1\METHODS\KST0025.M					
Last changed	:	9/23/2015 1:33:24 PM by KIRAN					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\KST0050.M					
Last changed	:	9/11/2015 5:21:48 PM by KIRAN					
Method Info	:	ESI neg					

Instrument 1 9/23/2015 2:09:48 PM KIRAN

Page 1 of 3

Sorted By	:	Sig	nal			
Multiplier	:	1.0	000			
Dilution	:	1.0	000			
Sample Amount:		:	10.00000	[ng/ul]	(not used in	calc.)
Use Multiplier	& Dilution	Factor	with ISTDs			

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	2.359	VB	0.0765	6.81629	1.23308	0.0676
2	6.295	BB	0.3405	1.00561e4	476.01416	99.6912
3	24.552	BB	0.1584	24.32964	2.35719	0.2412

Totals: 1.00873e4 479.60444

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
				-	.	
1	1.841	BB	0.0744	5.47732	1.05818	0.0104
2	2.318	BB	0.2105	102.97813	6.30528	0.1946
3	3.379	BB	0.1995	158.96597	10.68953	0.3004
4	4.701	BV	0.1768	252.66029	19.04232	0.4775
5	5.353	VB	0.1646	15.05430	1.34460	0.0285

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -2.0, max = 1000.0 Selement prediction: Off

Number of isotope peaks used for i-FIT = 3

Elements Used: C: 0-120 H: 0-200 N: 5-5 O: 0-35 I: 1-1 Monoisotopic Mass, Even Electron lons 32 formula(e) evaluated with 5 results within limits (up to 19 closest results for each mass)

Page 1

Elementa Jmposition Report

Page 1

Solerance = 10.0 mDa / DBE: min = -2.0, max = 1000.0 Single Mass Analysis Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 85 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-109 H: 0-200 N: 4-4 O: 0-32

05-Apr-2016

kst-05apr16-2-038 144 (2.663) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

Sample Name: MRS4380 Acq. Operator : SYSTEM Seq. Line : 2 Acq. Instrument : HPLC-001 Location : 2 Injection Date : 4/8/2016 1:21:40 PM Inj : 1 Inj Volume : 10.000 μl Different Inj Volume from Sample Entry! Actual Inj Volume : 5.000 µl : D:\Chem32\1\Data\KIRAN\New 2016-04-08 12-49-37\New.S Sequence File Method : D:\Chem32\1\Data\KIRAN\New 2016-04-08 12-49-37\WASH 00 100 30min.M (Sequence Method) Last changed : 4/8/2016 12:49:37 PM by SYSTEM

Data File D:\Chem32\1\Data\KIRAN\New 2016-04-08 12-49-37\MRS43800000004.D

Data File D:\Chem32\1\Data\KIRAN\New 2016-04-08 12-49-37\MRS43800000004.D Sample Name: MRS4380

		=========================	
Acq. Operator	: SYSTEM	Seq. Line	: 2
Acq. Instrument	: HPLC-001	Location	: 2
Injection Date	: 4/8/2016 1:21:40 PM	Inj	: 1
		Inj Volume	: 10.000 µl
Different Inj Vo	'olume from Sample Entry!	Actual Inj Volume	: 5.000 µl
Sequence File	: D:\Chem32\1\Data\KIRAN\	New 2016-04-08 12-	49-37\New.S
Method	: D:\Chem32\1\Data\KIRAN\	New 2016-04-08 12-	49-37\WASH_00_100_30min.M (
	Sequence Method)		
Last changed	: 4/8/2016 12:49:37 PM by	SYSTEM	
Peak RetTime Tv	vpe Width Area He	eight Area	

reak	Netitine	Type	MIUCH	AICU	nerenc	AICU	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	13.215	BB	0.2027	1.10084e4	789.17358	99.8893	
2	23.029	BB	0.1302	12.20231	1.36629	0.1107	

Totals : 1.10206e4 790.53987

Signal 2: DAD1 B, Sig=280,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.215	BB	0.2037	1.85816e4	1324.40186	100.0000
Total	s:			1.85816e4	1324.40186	

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.208	BB	0.1183	72.38586	8.41594	0.1208
2	2.235	BB	0.1386	15.27225	1.45315	0.0255
3	3.299	BB	0.1755	12.96953	1.06964	0.0216
4	3.851	BB	0.1740	26.95727	2.04216	0.0450
5	10.503	BB	0.4517	1.28312e4	353.28436	21.4106
6	11.823	BB	0.2644	34.32301	1.86786	0.0573
7	13.215	BB	0.2259	4.66755e4	3026.15576	77.8843
8	22.411	BB	0.2640	171.03448	8.31488	0.2854
9	23.001	BB	0.2140	89.58032	5.17464	0.1495

Totals :

5.99293e4 3407.77840

Summed Peaks Report

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

200	S69	
190		
180		
170		
160		— 158.81
150		
140		
130		— 129.15
120	0	
110 f:	NMR	
100 L (ppm)	Comp	
90	bound	
80 -	57	78.26
70		
60 -		~63.50
50 -		— 50.37
40 -		— 37.97
30 -		24 66
20		
10		—12.12
0 -		

STELement prediction: Off Monoisotopic Mass, Even Electron lons 38 formula(e) evaluated with 6 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 4-4 O: 0-30 I: 1-1 Single Mass Analysis Element omposition Report kst-24mar16-2-032 108 (1.997) Cn (Cen,5, 50.00, Ar); Sm (SG, 1x2.00); Sb (12,5.00) 24-Mar-2016 Number of isotope peaks used for i-FIT = 3 100-

413.3 435.3437.3439.3^{441.3}443.3^{444.3}

TOF MS ES+ 4.32e+003

403.0

%--

380.0

385.0

390.0

395.0

400.0

405.0

410.0

415.0

┶┶┶╓┷┶╓╸ 429.3 431.3

430.0

╟╴╍╸┙┠╺└╸ᡑ┡╴┎╹╸┙┙

405.3 407.3 408.3 411.2 414.3 415.3 419.3 421.3 423.3 425.0

381.3383.2 385.3 387.0 389.3 393.3 395.3 397.3 399.3 402.3 404.0

391.3

Minimum: Maximum:		30.0	10.0	-2.0 1000.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Form	nula				
403.0271	403.0267	0.4	1.0	7.5	14.8	C13	H16	N4	03	н	
	403.0326	-5.5	-13.6	-1.5	87.5	00	H20	N4	80	Π	
	403.0420	-14.9	-37.0	11.5	49.6	C17	H16	N4	н		
	403.0115	15.6	38.7	3.5	60.7	60	H16	N4	90	Н	
	403.0478	-20.7	-51.4	2.5	64.2	C10	H20	N4	05	н	
	403.0056	21.5	53.3	12.5	65.8	C16	H12	N4	0	Н	

Page 1


```
Data File D:\Chem32\1\Data\KIRAN\Kiran_SEQ 2016-03-25 17-05-39\WASH0000002.D
Sample Name: MRS4379
                                                                S72
   Seq. Line : 2
 • Acg. Operator : SYSTEM
   Acq. Instrument : HPLC-001
                                        Location : 1
                                         Inj : 1
   Injection Date : 3/25/2016 5:32:55 PM
                                      Inj Volume : 10.000 \mul
   Sifferent Inj Volume from Sample Entry! Actual Inj Volume : 5.000 µl
   Method
              : D:\Chem32\1\Data\KIRAN\Kiran SEQ 2016-03-25 17-05-39\ANAL A00-50 D100-50
                _15min.M (Sequence Method)
   Last changed : 3/25/2016 5:05:39 PM by SYSTEM
   Additional Info : Peak(s) manually integrated
```

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
4	6.172	BB	0.1511	12.17699	1.19286	0.0382
5	9.605	BB	0.1440	23.32392	2.34553	0.0731
6	10.893	BB	0.2087	66.84351	4.51630	0.2096
7	11.571	BV	0.2401	3.10133e4	1863.80017	97.2628
8	12.450	VB	0.1799	223.03877	17.83738	0.6995
9	13.238	BB	0.2343	170.27087	10.01568	0.5340

Totals : 3.18861e4 1914.76489

Signal 2: DAD1 B, Sig=280,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	1.131	BB	0.1702	23.39786	1.74712	0.0406
2	6.173	BB	0.1609	14.53150	1.40202	0.0252
3	9.605	BV	0.1437	17.18949	1.82830	0.0298
4	9.876	VB	0.1481	12.95157	1.25818	0.0225
5	10.893	BB	0.2250	145.65126	8.99155	0.2529
G	11.571	BV	0.2629	5.63016e4	3114.66797	97.7638
7	12.452	VV	0.1815	613.07935	48.48050	1.0646
8	13.239	VB	0.2372	460.98810	26.72404	0.8005

Totals :

5.75894e4 3205.09968

Signal 3: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	0.056	BB	0.0644	13.41560	3.10585	0.0133
2	0.864	BV	0.1867	151.84935	10.37706	0.1500
3	0.984	VV	0.0559	38.85734	9.87189	0.0384
4	1.121	VB	0.1244	237.18567	28.12972	0.2343
5	1.558	BV	0.3957	209.88603	6.69503	0.2074
6	2.133	VV	0.2731	181.43816	8.29697	0.1793
7	2.419	VV	0.0653	34.35464	8.77335	0.0339
8	2.685	VB	0.3872	273.55505	8.83481	0.2703
9	4.137	BB	0.2267	51.29127	3.17124	0.0507
10	6.173	BB	0.1526	19.17609	1.95195	0.0189
11	8.079	BB	0.1771	21.87146	1.83408	0.0216