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1. Model assumptions 

Our model describes transcription in four steps: Gene activation, transcription initiation, nascent 

RNA synthesis (elongation), and release (Fig. 1a). Regarding the gene activation step, we 

assume that the gene can randomly switch between an active state (state 1) and an inactive state 

(state 0), with switching in both directions as a Poisson process. This assumption is often used in 

models of cellular RNAs [1-3], to explain the observed bursty kinetics of RNA production and 

the measured RNA copy-number statistics [1,4,5]. Recently, it has been shown that, in some 

instances, more than two gene states are needed to describe the observed RNA copy-number 

statistics [6,7]. To accommodate for such scenarios, our model can be extended to the more 

general case of N gene states (see SM Section 14.1). 

In the active state, we model the initiation of new transcripts as a Poisson process with rate INIk . 

The assumption of Poisson initiation follows the standard model for cellular RNAs [1-3]. The 

model can be extended to include more complex initiation kinetics, as described e.g. in [8] (see 

SM Section 14.2). Following initiation, the synthesis of a nascent RNA molecule from the gene 

is described as a continuous elongation process with a constant speed ELV . The approximation of 

constant elongation speed is justified by the fact that, even if each elongation step is highly 

stochastic, when examined at the resolution of nascent RNA measurements (~10-100 fluorescent 

molecules per gene [1,9,10]), the variability in speed is significantly diminished [8,11,12]. 

In the model, we neglect the interaction between adjacent RNA polymerases (RNAPs). To 

justify this, we note that a single transcribing RNAP covers a region of DNA sequence of size 

~ 25-40base pairs (bp) [13,14]. For the hb gene analyzed in this work, we found a maximum 

number of 60-80RNAPs per gene (corresponding to 1

INI 20-30 mink  ). Considering the length 

of the hb gene ( 3.6 kbp ), the average center-to-center distance between neighboring RNAPs is ~

45-60 bp . Thus, transcribing RNAPs are not expected to overlap each other. Consistent with this 

picture, a recent numerical study suggested that RNAP interaction can still be neglected for 

1

INI 30 mink  [8]. 

However, it is also possible that the stochastic kinetics of RNAP movement during elongation 

will lead to RNAP-RNAP interaction. This will be the case, for example, if RNAP pauses or 
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backtracks for durations longer than the ~1 sec it takes to cover the inter-RNAP distance [15-17]. 

Even without direct contact, RNAPs may interact indirectly by modifying the local supercoiling 

state of transcribed DNA [18,19]. A number of previous works modeled RNAP interaction [8,19-

21], and their approaches can in the future be incorporated into our modeling framework. 

Following nascent RNA synthesis, we assume that the completed transcript stays at the gene for 

a certain time period ST  before being released. This step in the model is aimed at capturing the 

post-elongation phase, where multiple RNA processes take place, e.g. splicing, capping and 

polyadenylation [22]).  The duration and stochasticity of these processes may depend heavily on 

the specific gene and organism: Experimentally measured ST  range from much shorter [23,24] to 

much longer [25-27] than the RNA elongation time ( ELL V ). We use a fixed delay time ( ST ) to 

describe the post elongation residence, corresponding to a deterministic release kinetics. 

However, stochastic release kinetics can be included in the model (see SM Section 14.3).  

2. Comparison with previous models of nascent RNA kinetics 

A number of models have been developed to describe nascent RNA kinetics. Among them, a few 

focus on one or two specific features of transcription (e.g. RNAP pausing and traffic jam [20,21], 

sequence-dependent motion of RNAP [28]), while treating all other aspects of the transcription 

process in a highly simplified manner (e.g. neglecting gene activation). More recently, in parallel 

with the emergence of single-cell nascent RNA measurements, more comprehensive models of 

transcription kinetics were introduced, aimed at explaining the experimentally-measured 

statistics of nascent RNA. Zenklusen et al. [5] proposed a model where gene activation and 

transcription initiation are described as Poisson processes, and RNA synthesis is described as a 

fixed time interval. Using Gillespie simulations, they examined the distribution of RNAP 

numbers on the gene. The authors did not write down the master equation and did not calculate 

the corresponding probability distribution. In addition, the model only described the copy-

number statistics of RNAP rather than of partially synthesized nascent RNA, thus limiting the 

ability to directly compare model predictions with experimental smFISH data. Such a 

comparison required an extra step of rescaling smFISH signals to the equivalent number of 

RNAPs [7]. More recently, Choubey et al. [8] introduced a different model, where in addition to 
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stochastic gene activation and transcription initiation, RNAP movement on the gene is also 

described as a chain of stochastic hopping from one base pair to the next. This formalism 

allowed modeling varying lengths of nascent RNA. The model also considered complex multi-

step kinetics for transcription initiation. By writing the master equation for the model, Choubey 

et al. derived the mean and variance of RNAP numbers at the gene. However, the single-base 

resolution of the model made the master equation too complicated to solve, even numerically.  

In the formalism presented in this work, we explicitly model the observed nascent RNA signal 

by considering the length of partially-synthesized RNA and the specific detection scheme (e.g. 

an smFISH probe set). We describe RNA synthesis as a continuous, deterministic elongation 

process. This is similar to the approach of [5], and can be thought of as the continuous limit of 

Choubey et al.’s model [8]. Applying this simplification allows us to directly solve the master 

equation for nascent RNA and  investigate the shape of the distribution function, steps which 

were not possible using previous models. At the same time, our modeling framework is flexible 

enough that we can, in a straightforward manner, extend the model to include additional features 

such as multi-step gene activation, non-Poissonian initiation, stochastic RNA release, finite 

smFISH labeling efficiency, etc. (see SM Section 14).    

3. Constructing the master equation for P(n,m) 

Following Eq. (1) (Note: red pointers indicate equations in the main text), which describes 

( , )Pn m , we now derive an equation explicitly for ( , )P n m . As the first step, the distribution 

of the system state ( , )n m  at time t  can be formally written as  

 
RESRES ,(0, ) .t t TT   P U P    (S1) 

Here, we have rewritten Eq. (1) in a full matrix form, combining different m  (or m ) values. 

Specifically, (1)  
T

( )t t mP P  is the vectorized probability distribution of the system state ( , )n m  

at time t . Since mm  for 0  , 
tP  is equivalent to the vectorized probability distribution of 

( , )n m  for 0  , i.e. 
T

, 0 , 0 ( )t t t  
    P P P m .  (2) 

RES RES

T

, , ( )t T t T  
   P P m  is the 
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vectorized initial condition. Since 0m  for REST   , only the 0m  components of 

RES,t T P  are nonzero, and equal to the marginal distribution of the gene state n  at time RESt T , 

i.e. 
RES RES

T

,
0

( ) ( )t T t T m dm 


 
 
  P Pm . (3)   

RES

0

INIT exp ( )
T

d 


  
  U K K  is the propagator 

from REST    to 0  , with  ( )m K K m  and  INI INI ( ( )) ( )m g m        K K m m  

the full matrix versions of K  and INIK  combining different m  and m  values.  

Eq. (S1) relates the distribution of the system state ( , )n m  at time t  to the marginal distribution 

of the gene state n  at time RESt T  for any given t . Therefore, to calculate how ( , )n m  evolves 

from t  to t dt , we only need to know how the marginal distribution of n  (the only nonzero 

component of 
RES,t T P ) evolves from RESt T  to RESt T dt  . Since transitions between different 

n ’s are simply described by K , we construct the master equation for ( , )P n m  as 

 1 ,t t t

 P MP UKU P   (S2) 

where 1M UKU  is the transition matrix for the system state ( , )n m . Notice that Eq. (S2) is 

analogous to the Heisenberg representation in quantum mechanics. In other words, M  is the 

solution of the following Heisenberg equation for M  at 0  : 

 INI[ ( ), ], K KM M   (S3) 

where the initial condition is 
REST  KM . 

Since , , and U  all have infinite dimensions, it is difficult to solve the actual form of M  

from Eq. (S3). Instead, by transforming ( , )P n m  into its characteristic function ( , )n   [29], we 

can decouple different dimensions, and convert Eq. (S2) into a two-dimensional equation 

 1( ) ( ) ( ),   Ψ MΨ UKU Ψ   (S4) 

K
INIK
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where   
RES

0
( )

INIT exp ( 1)i g

T
e d  



   
  U K K  is the propagator of Eq. (2), and 1M UKU  

is the transition matrix for ( , )n  . The 2×2 transition matrix M  is therefore the solution of the 

Heisenberg equation for M  

 
( )

INI[ ( 1) , ]i ge    K KM M   (S5) 

at 0  , with initial condition 
REST  KM .  

Eqs. (S2) and (S4) can be used as an alternative to Eqs. (1) and (2) for solving ( , )P n m .  This 

can be done either at steady state (as described in the paper), or for the time-dependent behavior 

(as mentioned in the Conclusion). 

4. Numerical methods for solving Eq. 1 

If analytical solutions for Eq. 1 are not available, numerical solutions can be obtained using the 

Finite State Projection (FSP) method [6,9,30]. The basic idea is to simplify Eq. 1 so that it 

includes only a finite set of m  values. We first discretize the nascent RNA signal to 

0, , 2 ,   m m m  Here, the bin size m  must match the smallest change in the 

contribution function g . For example, if 1g  , m  is naturally discretized, and 1 m . If 

g   , m  is continuous, so the bin size needs to be much smaller than one ( 1m ). We 

write the discretized version of Eq. 1 [9]: 

  

INI

INI

INI

INI

INI

INI

INI

0 0 0 (0)

0 0 ( )

0 0 (2 )

,
0 0 ( ( ))

0 0 ( ( ) )

0 0 ( ( ) 2

(

)

)
g

g

g








   
   


   
   
   
    
   
   

   
   
   
      











K

K

K

K K
K

K

K

K P

K P

K P

P P
P

P

P

m

m

m

m

  (S6) 
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where  

 

INI

INI

INI

INI INI

INI

INI

0 0

0 0
0 0

0
0 0

, ( ) .0
0 0

0

0 0



 
 


  
  
      
  
  
 
 
 

K

K
K

K
K

K K K
K

K

K

  (S7) 

Eq. (S6) is solved by propagating the initial state 
REST P  through the time window RES 0T    , 

i.e. 

    
RESINI INI RES0 ( ) ( ) ,TT               K K K K PP I I   (S8) 

where I  is the unit matrix, and REST  is the discretized time step. By setting an upper limit 

of m , and truncating P , K , and 
INIK  into finite dimensional vector and matrices, we are able 

to numerically calculate the steady-state distribution of ( , )P n m  [9]. Clearly, the truncated range 

of m  must be large enough to cover the main portion of the distribution [6,30]. Following [9], 

we set the upper limit of m  to be 60. 

We implemented the FSP method using MATLAB (MathWorks Inc.). According to Eq. 1, 

( , )P n m  is a function of 01 RESk T , 10 RESk T , INI RESk T . When solving Eq. (S8), we always set 

RES 1T   and replace 01 10 INI{ , , }k k k  with their products with the actual value of REST  (see SM 

Section 11 for the estimation of REST ). To balance accuracy and speed, we used the following 

parameter values: 0.001 m  and 0.0001   for theoretical distributions shown in Fig. 4(a) 

and Fig. S1(b); 0.1 m  and 0.001   for fitting of experimental data shown in Fig. 3; 

1/ 72 m  and 0.001   for theoretical distributions shown in Fig. 4(c).  

Stochastic simulation of the model was performed following the Gillespie algorithm [5,9,31]. 
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5. Deriving the moments of P(m) 

In addition to the full distribution function ( )P m ,  the moments of that distribution can also be 

used for interpreting experimental data [8,32,33]. In general, the N th raw moment N

N m   

can be calculated from the characteristic function   as [29] 

 

0, 0

( ) ,
N

N

N N

d
i

d
 




 

  
Ψ

u   (S9) 

with  1,1u . Hence, by taking the derivative of Eq. (2) with respect to  , we obtain 

  
1

INI

00 0 0

.
N N jN

N j

N N j
j

Nd d d d
ig

jd d d d
  

   




  

   
     

  


Ψ Ψ Ψ
K K   (S10) 

This is a set of first order linear differential equations for 

0

N

N

d

d





Ψ
, whose solutions are well 

known. For 0   , we have 

 
1

1

RES
RES RES

0

1, , 1

0

1

1 0 1 1

T ( ) ( ) (0),
I

i i

i I

i I

IN
i k k

N I i i T
T T

I k k k N i i

k
d d g

k



    




 




 

      

  
    

  
   u W Ψ   (S11) 

where ( ) t tt e e K K

INIW K . Specifically, we find the mean ( 1 ) and the variance ( 2

2 2 1    ) 

of m  to be  

 
RES

RES RES

0 0
01 INI

1 1 1 1 1 1

01 10

( ) ( ) (0) ( ) ,T
T T

k k
d g g d

k k
     

 
  

 u W Ψ   (S12) 

  

  

1

RES
RES RES RES

1

RES RES RES

0 0
2

2 1 1 1 1 2 1 2 1 2

2
0 0

201 INI 01 10 INI
1 1 1 2 1 2 2 12

01 10

( ) ( ) ( ) ( ) ( ), ( ) (0)

( ) 2 ( ) ( )sinh ,

T
T T T

T T T

d g d d g g

k k k k k
g d d d g g k

k k k







         

       


  

  

  

  


  

  

u W W W Ψ

  (S13) 

where [ ]  is the commutation operator and 01 10k k k  . The first term on the RHS of Eq. (S13)

represents the contribution from Poissonian transcription initiation when the gene is in the active 
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state, whereas the second term denotes the added fluctuations caused by transitions between gene 

states [32,33]. 

6. Deriving the steady-state distribution for g = 1 

For 1g  , Eq. 1 becomes  

 
01 10

01 10 INI INI

(0, ) (0, ) (1, )

(1, ) (0, ) (1, ) (1, ) (1, 1),

P k P k P

P k P k P k P k P

   


    

m m m

m m m m m

  (S14) 

and the initial conditions are (for RES 1T  ) 

 

10
1

01 10

01
1

01 10

( )
(0, )

( )
(1, ) .

k
P

k k

k
P

k k














 


 
 

m
m

m
m

  (S15) 

Since m  only takes integer values, we define the generating function 

0

( , ) ( , )F z z P




  m

n

m

n m , and transform Eq. (S14) to obtain 

 
0 01 0 10 1

1 01 0 10 1 INI 1( 1) ,

F k F k F

F k F k F z k F

   


   

  (S16) 

with the initial conditions 

 

10
0 1

01 10

01
1 1

01 10

.

k
F

k k

k
F

k k










 


 
 

  (S17) 

By further defining the marginal generating function 
0 1

0

( , ) ( , ) ( , ) ( )F z F z F z z P  




    m

m

m  

corresponding to the marginal probability ( ) (0, ) (1, )P P P   m m m , we convert Eq. (S16) 
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to a 2
nd

 order differential equation (Eq. (6)), 

  10 01 INI INI 01(1 ) (1 ) 0,F k k z k F z k k F         (S18) 

with the initial conditions  

 
1

INI 01

1
01 10

1

( 1) .

F

k k
F z

k k









 



  

  (S19) 

Next, using the ansatz F e , we obtain, from Eq. (S18) , 

  2

10 01 INI INI 01(1 ) (1 ) 0,k k z k z k k          (S20) 

whose solutions are 

 
   

2

01 10 INI 01 10 INI 01 INI

1,2

(1 ) (1 ) 4 (1 )
.

2

k k k z k k k z k k z


        
   (S21) 

The general solution of Eq. (S18) is 1 2F Ae Be
  

  , where the parameters A and B are 

determined by the initial conditions in Eq. (S19). With RES 1T  , we obtain the steady-state 

generating function,  

 
1 2 2 1

INI 012 1

2 1 01 10 2 1

( , 0) ( 1) .
k ke e e e

F z z
k k

    


   

 
   

  
  (S22) 

The steady-state distribution is calculated using  

 
0

1
( ) ( ,0) .

!

m

m z
P m F z

m z 





 (S23) 

To apply this formula, we consider the explicit dependence of F  on z . Specifically, we divide 

1,2  into two parts, 1 2
1,2

2

 
  , where  1 01 10 INI 1k k k z         is a linear function of z , 
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and   2

2 INI 1 INI 2(1 ) (1 )k z k z        is the product of two linear functions of z , with 

1,2 10 01 01 102k k i k k    . Consequently, Eq. (S22) can be re-written as 

  
1

1

2
201 INI

1 1 0

01 10

2
( ,0) 1 ,

2

k k e
F z z E e E

k k




 
    

 
 (S24) 

with 
   

 
INI 1 INI 2

s 2
0

(1 ) (1 )

2 !2

l l

l
l

k z k z
E

l s

 



   



 . The ith derivative of sE  at 0z   obeys 

 

 min( , )

INI 1 INI 2 INI

2 max(0, )0

INI
,

1 !

(2 )! 2 2 2

,
2

i l w l i w ii l i

s

i
l i w i lz

i

s i

l l iE k k k

w i wz l s

k
M

 
  

  

         
         

         

 
  

 

 
  (S25) 

where  

 
 min( , )

INI 1 INI 2
,

2 max(0, )

1 !
.

(2 )! 2 2

i l w l i wl i

s i

l i w i l

l l i k k
M

w i w l s

 
  

  

       
       

       
    (S26) 

Hence, the probability distribution ( )P m  is given by (Eq. (7)) 

 

01 10 INI

2
INI 01 10 INI INI 01

1,

001 10

1
01 10

0, 1,

0 001 10

( )
! 2 2

1
.

k k k
m m

i

i

m m

i i

i i

mk k k k k ke
P m M

im k k

m mk k
M m M

i ik k

 






 

     
     

     

    
     

    



 

  (S27) 

7. An approximation for P(m) in the limit of slow gene-state switching   

In the limit where 01 10 INI( & )k k k  and 01 10( or ) 1k k , the square root term in Eq. (S21) can be 

approximated by  2 01 10 INI 1k k k z      , which leads to 
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1 10 INI

2 01

(1 )

.

k k z

k





   


 
 (S28) 

Hence, Eq. (S22) is simplified to 

    
10 INI INI 10

10 INI INI 10

INI 01 INI 10
01 10

01 10 01 10

01 10 INI 01 10 INI

1 2

( 1) ( 1)

( ,0)
1 1

( ) ( )
,

( ) ( )

k k k z k

k k k z k

k k k k
k z k z

k k k k
F z e e e

k k k z k k k z

I z I z
e e e

J z J z

  

  

    
 

 
       

 

  (S29) 

where  

 

 

INI 01
1 01

01 10

INI 10
2 10

01 10

01 10 INI

( ) ( 1)

( ) ( 1)

( ) 1

k k
I z k z

k k

k k
I z k z

k k

J z k k k z


    



   
 


    

  (S30) 

are linear functions of z . Using the following identities [2]: 

 
1

0 0

( ) ( 1) ( 1) ( )
! ( ) ( ) ,

( ) ( 1)!( )!( )!

n n k j j kn k
j

n n k k
k j

I z k J z
n I z J z

z J z z j n k k j z

  


 

    


     
   (S31) 

and applying Eq. (S23), we derive the steady-state distribution of m  as  

 

 

 

01 10 INI

01

INI 10 01

10 01 INI
,0

01 10 01 10

1

INI 10 01INI 01 10

0INI 10 01 01 10 INI

( )
!

2
1 .

!

k k k m

m

m ik m
k k k

i

k e k e k
P m

k k k k m

k k kk k k e
e

k k k k k k i


  




  



 
 

   
   

       


  (S32) 

Since 01 10( or ) 1k k , Eq. (S32) can be approximated as  

 INI10 01 INI
,0

01 10 01 10

( ) ,
!

m
k

m

k k k
P m e

k k k k m
 

 
 

 (S33) 
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which is the weighed sum of two Poisson distributions, with rates 0 and INIk .  

Eq. (S33) is identical to the solution for the commonly used two-state model for cellular RNA 

kinetics [1-3,5] in the same limit defined above ( 01 10 INI( & )k k k  and 01 10( or ) 1k k ), as long 

as we replace the residence time REST  with the RNA degradation rate Dk  (Fig. 2(a) panels I, III, 

and IV). To compare the two models outside this limit, we measured the relative difference d  

between their distributions nasP  and cellP , defined as    nas cell nasmax maxd P P P   (Fig. S1). 

We found that ~ 1d  for 01 10( & ) ~1k k , indicating that the probability distributions predicted by 

the nascent and cellular RNA models are very different under this condition (Fig. 2(a) panel II). 

8. Deriving the steady-state characteristic function for g = −τ 

For g   , Eq. 2 becomes  

 
01 10

01 10 INI INI

(0, ) (0, ) (1, )

(1, ) (0, ) (1, ) (1, ) (1, ),i

k k

k k k k e 

  

    

     

        

  (S34) 

with the initial conditions 

 

10
1

01 10

01
1

01 10

(0, )

(1, ) .

k

k k

k

k k














  

 
 

  (S35) 

We define a marginal characteristic function 
0

( ) (0, ) (1, ) ( )ie P d  


    
m

m m . Eq. 

(S34) then becomes 

 
INI 1

1 01 10 01 INI 1

( 1)

(1 ) ,

i

i

e k

k k k e k









    


          

  (S36) 
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where 1 (1, )  . Combining the two equations in Eq. (S36) results in a 2
nd

 order differential 

equation for 1  (Eq. (8)), 

    1 01 10 INI 1 INI 01 INI 01 11 0,i ik k k e k k i e k k                 
  (S37) 

with the initial conditions 

 

01
1 1

01 10

INI 01
1

1
01 10

( 1) .i

k

k k

k k
e

k k












  

  
 

  (S38) 

To solve Eq. (S37), we substitute variables using iz e  , and obtain 

     2 2

01 10 INI INI 01 INI 01 1
ˆ ˆ1 0,i k k k z k k i z k k                      (S39) 

where ˆ z
z







. Eq. (S39) is similar to the confluent hypergeometric differential equation [34], 

except for an extra term INI 01 1k k  . To eliminate this term, we use the substitution 
1

sz W , 

and rewrite Eq. (S39) as 

 
2 01 10 INI INI 012 ( 1)

0,
k k k is k k i s

z W
i i i

 
  

  

       
     

    
  (S40) 

where s  obeys 

 2

01 10 INI 01 INI( ) ( )( ) 0.is k k k is k k          (S41) 

Defining is   , we write the solution of Eq. (S40) as 

 

01 01 10 INI INI
0 1 1

01 01 10 INI INI
0

2
( ) 1 ,1 ,

2
( ) 1 ,1 , ,

k k k k ik
W A F i i z

k k k k ik
B U i i z

 


  

 


  

    
   

 

    
   

 

  (S42) 
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where   is obtained by solving Eq. (S41),  

 
   

2

01 10 INI 01 10 INI 01 INI

1,2

4
.

2

k k k k k k k k


      
   (S43) 

Here, 1 1( , , )F a b x  and ( , , )U a b x  are the confluent hypergeometric functions of the first and 

second kind [34,35]. The coefficients 0 ( )A   and 0 ( )B   still need to be determined.  

Converting W  back to 1  and using the relation between 1 1F  and U  [34,35] results in a more 

symmetric-looking expression, 

 

1

2

01 1 INI1 2
1 1 1

01 2 INI2 1
1 1

( ) 1 ,1 ,

( ) 1 ,1 , ,

i

i

k ik
A e F i i e

k ik
B e F i i e

  

  

  


  

  


  





  
    

 

  
   

 

  (S44) 

where ( )A   and ( )B   are new coefficients.  

Applying the initial conditions (Eq. (S38)), we find the coefficients ( )A   and ( )B   to be 
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with 

 

 

01 2 INI 01 1 INI2 1 1 2
01 2 1 1 1 1

01 1 INI 01 2 INI1 2 2 1
01 1 1 1 1 1

2 ,1 , 1 ,1 ,
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i i
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Consequently, the characteristic function at time 0   is 
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Transforming ( )  back to an analytical form of ( )P m  is challenging. In this paper, we 

calculate ( )P m  using the finite state projection method [6,7,9](SM Section 4 above). Figure 

S2(a) depicts ( )P m  for several parameter values.  

9. Estimating the modality of P(m) 

It has been shown that the modality of a distribution strongly affects the relation between the 

third standardized moment (or skewness, defined as 3

3   , where 3  is the third moment 

around the mean) and fourth standardized moment (or kurtosis, defined as 4

4   , where 4  

is the fourth moment around the mean) [36]. An important relation between these two quantities 

is [37] 

 
2 1.     (S48) 

Typically, bimodal (or multimodal) distributions result in lower values of 
2   compared to 

unimodal distributions. Specifically, 
2 1    corresponds to the two-point Bernoulli 

distribution (bimodal), whereas the highest value of 
2   (infinity) corresponds to a single-

peak delta distribution (unimodal). Previous studies have demonstrated the use of 
2   as a 
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measure for the modality of distributions [36]. Here, we define the reciprocal of this quantity as 

the bimodality coefficient  , i.e. 

 
2

1
,

 



  (S49) 

which is bounded between 0 and 1. The   value for a unimodal distribution is closer to 0, 

whereas that of a bimodal distribution is closer to 1. Using the uniform distribution ( th 5 9  ) 

as a critical case, we distinguished bimodal distributions from unimodal ones (Fig. 2(b) and Fig. 

S2(b)). Using the 0N   component of ( )P m , i.e. 
 

0 0 1
0

( )N NP P m dm e 

 

    
INIK K

u Ψ  (see 

Eq. 4 and SM Section 12), The unimodal phase can be further divided into two parts according 

to the position of the peak (Fig. 2(b) and Fig. S2(b)): If 0 0.5NP   , ( )P m  is interpreted to have 

the major peak at 0m  ; otherwise, its major peak is interpreted to be at 0m  . 

In this work, the calculation of   is based on Eq. 5. The analytical expression is derived using 

Mathematica and the Symbolic Math Toolbox of MATLAB.  

10. Experimental details  

smFISH experiments were performed as described in [9]. Briefly, fruit fly embryos were 

collected and chemically fixed ~2 hours after fertilization. Sets of smFISH probes were 

hybridized against their target RNA in the embryo. Specifically, to measure hb transcription (Fig. 

3(a)), wild type (Oregon-R (OreR)) embryos were labeled using a set of 48 TAMRA-conjugated 

probes [9]. To compare the effect of different contribution functions (Fig. 3(b)), a transgenic fly 

strain (bcd3-lacZ) was used, in which a lacZ reporter gene is driven by three high-affinity Bcd 

binding sites fused to a minimal promoter [9]. A set of 30 TAMRA-conjugated probes and a set 

of 30 Alexa 647-conjugated probes (corresponding to lacZ probes #1-30 and #43-72 used in [9], 

respectively) were simultaneously applied to label the 5’ and 3’ portions of the lacZ gene. To 

demonstrate the discontinuity in ( )P m  (Fig. 4(c)), bcd3-lacZ embryos were labeled using a set 

of 72 TAMRA-conjugated probes (from [9]). Following smFISH labeling, embryos were stained 
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using Hoechst 33342 (to label cell nuclei), mounted on glass slides, and imaged using a confocal 

microscope.  

The nuclear cleavage cycle of each embryo was determined as in [9]. Embryos at cycles 11-13 

were used for analysis. RNA signals were quantified using custom MATLAB scripts [9]. 

Nascent RNA was distinguished from mature RNA as described in [9], using a threshold of 

3m  . 

11. Fitting the experimental distribution of nascent RNA 

For each imaged embryo, the anterior-posterior (AP) position (in units of embryo length, EL) of 

each cell nucleus was measured.  In Fig. 3(a), nuclei within the following three representative 

AP position ranges were studied (corresponding to pink regions in Fig. 3(a)): 0.25-0.35 EL, 

0.45-0.55 EL, 0.65-0.75 EL.  In Fig. 3(b), nuclei within the range 0.2-0.3 EL were studied. In 

Fig. 4(d), nuclei within the range 0.1-0.3 EL were studied. For the given AP position range, the 

histogram of nascent RNA (per gene copy) was constructed. To fit the experimental histograms 

to our model, we applied maximum likelihood estimation (MLE) [3,9]. Briefly, we looked for 

the parameter set 01 10 INI{ , , }k k kK  that maximizes the likelihood  

 ( | ) ( | )i

i

L M P mK K   (S50) 

for the set of nascent RNA signals 1 2{ , , }M m m . Here, ( | )iP m K  is the probability of 

observing the nascent RNA signal im  given the parameter set K . Its value was calculated using 

the FSP method (see SM Section 4), where the contribution function ( )g   was constructed 

based on the locations of smFISH probes on the gene (Table S1). The parameter search was 

done using a combination of simplex and simulated annealing methods (MATLAB function: 

“simulannealbnd”). To increase accuracy, the search was applied 24 times, and the result with 

the highest likelihood was chosen. 

We note that, according to Eq. 1, ( , )P n m  is a function of 01 RESk T , 10 RESk T , INI RESk T . Hence, 

fitting the nascent RNA distribution does not provide independent estimates of the kinetic 
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parameters and of REST , but rather their products. To determine the actual values of 01 10 INI{ , , }k k k , 

we evaluate REST  based on the gene length L  and the experimentally reported ELV  .  Specifically, 

in the Drosophila embryo, ELV  was measured to be 1.54 0.14 kbp/min   [38]. Consequently, we 

estimated REST  to be 2.5 minutes for the hb gene ( 3.6 kbpL  ) and 2 minutes for the lacZ gene 

( 3.0 kbpL  ). We set ST  to be 0 [10,38]. 

12. Calculating the discontinuity in P(m) 

We consider the case RES 1T   and g   . According to Eq. 4, the probability of observing m  

nascent RNAs given N  initiation events in the time interval RES 0T     is 

 

 

1

1

0

1 1
1 1

1
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N

N
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N i N
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INIK K
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  (S51) 

where 
 

1 1

1

( , , ) T ( )
N

N i

i

e   






 
  

 
 INIK K

f V Ψ  is the probability density for a specific time 

series of initiation events at 1, , N  . Here, we consider the marginal distribution 

( ) ( )N NP m m u P . According to Eq. (S51), for 0N  , ( )NP m  and its derivatives up to the 

( 1)N 
th

 order are all continuous within the range 0 m N  , and ( ) 0NP m   for m N . 

At 0m  , 0 (0)P  is infinite. Since 
 

1 1(0)P e 



  INIK K

INI
u K Ψ  and 1(0) 0NP   , 

1

(0 ) (0)N

N

P P






  

is finite. Therefore, ( )P m  has an infinite discontinuity at 0m  . 

At 1m  , because 
 

1 1( 1 ) 0P m e 



   INIK K

INI
u K Ψ  and 

1( 1 ) 0P m   , ( )P m  has a jump 

discontinuity with magnitude 

  
1 1 1 11 1

( ) ( ) ( 1 ) ( 1 ) .N m m
P P m P m P m P m e  

 

  
         INIK K

INI
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For 1N  , to calculate ( )NP m N  , we define ( ) ( )
N

N N
m

F m m dm  u P  as the complementary 

cumulative distribution given N  initiation events. For m  smaller but very close to N , we have 

 
2

( )
( ) ( 1, , 1),

( !)

N

N

N m
F m N

N

 
    u f   (S53) 

and  

 

1( ) ( )
( ) ( 1, , 1).

!( 1)!

N

N
N

dF m N N m
P m N

dm N N

 
  

      


u f   (S54) 

Eq. (S54) shows that, when m  is approaches N  from the left, ( )NP m  drops to zero following a 

power law of order ( 1)N  . This indicates that ( )NP m N   and its derivatives up to the ( 2)N 

th
 order are all zero, whereas  

 
 

1 1 1

INI 11

( ) ( 1) ( 1)
( 1, , 1)

! !

N N N
NN
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m N

d P m
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u f u K Ψ   (S55) 

is nonzero. Since, 
1

1

( )
0

N

N

N

m N

d P m

dm 







 , the ( 1)N 
th

 order derivative of ( )P m  has a jump 

discontinuity at m N  with magnitude (Eq. (9)) 
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13. Experimental observation of the discontinuity in P(m) 

To experimentally detect the discontinuity in ( )P m  (Fig. 4(c)), bcd3-lacZ embryos were labeled 

using smFISH (see SM Section 10). For each imaged embryo, the nascent RNA signal m  from 

the anterior part of the embryo (AP positions 0.1-0.3 EL) was recorded. The histogram of m  was 

fitted to the theoretical model (see SM Section 11), to estimate the kinetic parameters 01k , 10k , 

INIk .  
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To visualize the effect of discontinuity in ( )P m , we needed to focus on small m  values, where 

the magnitude of the jump ( NP ) is high. Considering the threshold used to distinguish nascent 

RNAs from mature ones (see SM Section 10), we chose a range 3.5 6.5m   for the analysis. 

The amount of data points in this range is small, due to the low ( )P m  value (estimated using 01k , 

10k , INIk ). To increase the density of data, we defined a new variable 0 [ ]m m m   ([ ]  denotes 

the nearest integer function) to map m  values around different integers into a common range 

from −0.5 to 0.5. To obtain an accurate histogram of 0m , we collected ~500 data points from 23 

embryos. This histogram was then compared with the theoretical prediction using the kinetic 

parameters ( 01k , 10k , INIk ) estimated above. In performing this comparison, we incorporated two 

additional factors: (1) the finite accuracy in nascent RNA quantification, caused by the imprecise 

estimation of the intensity of a single RNA [5,9,39], and (2) the probe binding probability 0p  

[9,40] (see SM Section 14.5). We then applied MLE (see SM Section 11), allowing a small fold 

change 0f  for all m  values ( 0m f m , factor #1) and 0 1p   (factor #2). We found that the 

histogram matches the theoretical prediction best for 0 0.9f   and 0 0.8p  .  

14. Possible extensions of the model 

Below we describe possible extensions of the model, allowing the incorporation of more 

complex transcription kinetics and additional experimental details.   

14.1. Modeling N gene states 

The model can be extended to describe a general case of N  gene states [6]. In such a case, Eqs. 

(1)-(5) and Eq. (9) still hold, but the dimensions of vectors and matrices involved will increase to 

N . For example, for a three-state model ( 3N  ), we have 

01 02 10 20 INI,0

01 10 12 21 INI INI,2

02 12 20 21 INI,2

(0, ) 0 0

( ) (1, ) , , 0 0 ,

(2, ) 0 0

P k k k k k

P k k k k k

P k k k k k

     
    

      


 
          

P K K

m

m m

m

 (S57) 
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where 
ijk  ( , 0, 1, 2i j  ) is the transition rate between gene states i  and j , and 

INI,ik  is the rate of 

transcription initiation for gene state i . In a general case, the initial condition 
RES

( )T P m  for 

the steady-state solution satisfies  

 
RES

RES

(0) 0

( 0) 0.

T

T












 

KP

P m

  (S58) 

14.2. Modeling multi-step transcription initiation 

Previous work suggested that, in some instances,  transcription initiation may involve multiple 

( S ) steps [8], each described as a Poisson process with rate 
I,sk  ( 1, 2, , s S ). In that case, 

following [8], we can describe the system (originally 2-state) using a special ( 1)S  -state model, 

where states n = 2, …, S+1 represent different initiation steps. Here, transition rates between 

states 2, , 1n S   are replaced by 
I,sk , and INIK  becomes off-diagonal, indicating the 

transition of system state from 1n S   to 2n   after initiation. For example, for a two-step 

initiation model ( 2S  ), we have 

 

01 10

01 10 I,1 I,2 INI I,2

I,1 I,2

0

0

0 0 0

, 0 0 ,

0 0 0

k k

k k k k k

k k

   
   

      
      

K K   (S58) 

Eqs. (1)-(5) and Eq. (9) still hold. 

14.3. Modeling the stochastic release of nascent RNA 

According to previous studies, the post-elongation dwell time of nascent RNA on the gene may 

be long compared to the elongation time [25-27], and the release kinetics is not well understood. 

A reasonable alternative to the deterministic release hypothesis used in the paper is that the RNA 

release is a Poisson process, with rate Rk . To solve the model in this case, we note that the 

nascent RNA signal is composed of two species: (1) The elongating nascent RNA, which 

corresponds to initiation events happening at EL EL 0T L V      , and is described by Eq. 1. 

(2) The post-elongation nascent RNA, which corresponds to initiation events happening at 

ELT   . This species follows the same kinetics as cellular RNA [1-3,5], if we equate the release 
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rate Rk  with the RNA degradation rate Dk . To include this species in our model, we generalize 

Eq. (S1), such that ( , )Pn m  now receives contributions from all 0  , i.e. 

 
EL

0 0 *

, 0 , EL EL , EL ,(0, ) (0, ) ( , ) (0, ) ,t t t t TT T T             P U P U U P U P   (S59) 

where 2 1( , ) U  is the propagator from 1  to 2 . Here, we have divided the entire history 

( ,0]    into the two parts, corresponding to the different nascent RNA species. Eq. 

Error! Reference source not found. shows that the existence of post-elongation nascent RNA 

modifies the distribution ( , )Pn m  at ELT   . The new distribution, denoted as
EL

*

,t T P , can be 

solved from the cellular RNA model of [1]. Specifically, at steady-state, we have 
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where 
( ) ( 1) ( 1)x x x x   m

m  denotes the rising factorial, and the sum of delta functions is 

to ensure that m  only takes integer values at ELT   . The distribution at 0   is solved by 

substituting Eq. Error! Reference source not found. into Eq. Error! Reference source not found.. 

Figure S3 depicts the distributions calculated from Eq. Error! Reference source not found. (with 

1g  ), for different parameter values. Stochastic simulations of the same model, also shown, 

agree with the analytical calculation. We compare the distributions to those calculated for the 

case of deterministic release with the same average release time, i.e. S R1T k . As mentioned in 

the main text, in the limit  01 10 INI( & )k k k  and 01 10( or ) 1k k , the solution for the nascent 

RNA model with 1g   is identical to that for a cellular RNA model with the same average 

residence time. Hence, in this limit, the stochastic release can be mapped to a deterministic 
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release with S R1T k , i.e. 
EL EL S

* 0

EL EL S ,( , )T t T TT T T     P U P . In Fig. S3, the three left 

columns describe this scenario.  Outside this limiting case, the two release kinetics can result in 

quite different distributions (Fig. S3, right column). 

14.4. Modeling both nascent and mature RNA 

Using smFISH, nascent and mature RNA can be measured simultaneously in the same cell 

[1,5,41,42]. Studying the joint distribution of the two species can help elucidate the relation 

between transcription and downstream processes such as RNA degradation and partition. In our 

model (with deterministic release), the observed nascent RNA nm  all comes from initiation 

events happening at RES 0T    , whereas the observed mature RNA mm  corresponds to 

initiation events happening at REST   . The two species are almost independent, and are only 

related through the gene state n  at REST   .  

Specifically, mm  and 
REST n  are described by the cellular RNA model [1-3,5]. If the 

probability distribution obtained by solving the cellular RNA model is 
RES

mature

m( , )TP m n , then 

for a given pair 
RES m( , )T m n , we can use its 

REST n  component as an initial condition when 

solving Eq. 1 for the corresponding probability distribution of nascent RNA nm . Since 
REST n  

can be either 0 or 1, we have two possible initial conditions, i.e.

RES

0 mature

n

1
( ) (0, )

0
T

m

P m 



 
  

 
P

n

m  and 
RES

1 mature

n

0
( ) (1, )

1
T

m

P m 



 
  

 
P

n

m . Following Eq. (S1), 

we calculate the corresponding probability distribution of n( , )n m  at 0   for each of these 

initial conditions as 
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Consequently, the joint distribution of the two RNA species is 
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1
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n
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14.5. Modeling the stochastic binding of smFISH probes 

In smFISH experiments, the observed RNA signal m  is affected by the stochastic binding of 

fluorescent oligonucleotide probes [9,40]. To include this process in our model, we consider that 

each RNA molecule is targeted by a set of 0N  fluorescent probes, each directed at a specific 

RNA sequence (a binding site). With the proper contribution function g , we solve Eq. 1 and 

then write the probability distribution of the total number of available binding sites ( 0i ) on all 

nascent RNAs present at the gene as   

 site 0 0 0 0( ) ( / ) / ,i i N NP P   (S63) 

where ( )P  is the solution of Eq. 1. Assuming that probe binding follows a binomial distribution 

with probability 0p , the probability distribution of the number of bound probes ( bi ) is 

 b 0 b

0 b

0

bound b 0 0 site 0

b

( ) (1 ) ( ).
i i i

i i

i
i p p i

i






 
  

 
P P   (S64) 

In the last step, we convert bi  to the observed signal m  using the typical signal from a single 

RNA molecule ( 1 0 0I p N  ), i.e. b 1m i I . The probability distribution of m  is thus   

 ob 1 bound 1( ) ( ).m I m I P P   (S65) 

14.6. Calculating the joint distribution for multiple smFISH probe sets  

In some smFISH experiments, a single gene is labeled using multiple smFISH probe sets, each 

carrying a different fluorescent dye (see Fig. 3(b)). Assuming 0 1p   and following a similar 

derivation to that of Eq. 1, we can write the master equation for the joint distribution of multiple 

smFISH signals ( sm , 1, 2, s   ): 

 1 2
INI 1 2 INI 1 1 2 2

( , , )
( ) ( , , ) ( ( ), ( ), ),

d
g g

d
 


    

P
K K P K P

m m
m m m m   (S66) 

with sm  and sg  the pseudo-observable and contribution function for signal s , respectively.  
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In this paper, we examined the joint distribution of two probe sets, targeting the 5’ and 3’ 

portions of the lacZ reporter gene in transgenic fly embryos (see Fig. 3(b) and SM Section 10). 

Since solving Eq. Error! Reference source not found. is computationally intensive, we instead 

performed a stochastic simulation (see SM Section 4). The simulated joint distribution agreed 

well with the experimental one ( 2 0.98R  ). 
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TABLE S1. Contribution functions for different smFISH probe sets 

smFISH probe set Contribution function 
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FIG. S1. The difference in P(m) between number of transcribing RNAPs and total cellular 

RNA.  

The relative difference between the theoretical distributions of number of transcribing RNAPs 

and of total cellular RNA ( d , see SM Section 7) is plotted as a function of 01k  and 10k , for 

INI 20k  .  
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FIG. S2. The probability distribution of nascent RNA at the gene. 

(a) The probability distributions ( )P m  for g    (blue) for a few parameter values. Also 

shown are the results of stochastic simulations (gray, bin width = 1), and the solution for a two-

state model of cellular RNA kinetics with INIk  half of the original magnitude (dashed line). Insets, 

( )P m  at the low range of m  (red boxes, bin width = 0.01). 

(b) The bimodality coefficient   for g    as a function of 01k , 10k  and INIk  was calculated 

and thresholded ( th 5 9  , bottom, red surface) to classify ( )P m  as either bimodal or unimodal. 

The unimodal distributions were further classified based on the peak position. Parameter values 

corresponding to panel a are marked as gray circles. 
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FIG. S3. The probability distribution for the number of RNAPs at the gene in the case of 

stochastic release. 

The solution for stochastic release kinetics (binned to integer values, red, see schematic on the 

bottom) for different parameter values. Also shown are the results of stochastic simulations 

(gray), and the solution for deterministic release kinetics with S R1T k  (dashed blue line, see 

schematic on the bottom). EL R1 1T k    in all cases. 

 


