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1 Estimation Procedure

We propose a two-stage estimation procedure. Before presenting the details of

our procedure, we give a brief sketch of both stages. In the first stage we fit a

semivarying coefficient model (Fan and Huang, 2005; Fan et al., 2007) to the

continuous response. At this stage we employ the profile least squares approach

proposed by Fan et al. (2007) to obtain efficient estimators of the regression

coefficients αw(t) and βw. In the second stage we use the residuals from the

first stage and the predictors for the binary response, and fit a generalized

varying coefficient model for the binary response given the continuous response.

At this stage we obtain the components necessary to compute the estimate of

τ(t).

Now we turn to the details for the first stage. For a given βw, let W ∗i (t) =

Wi(t)− zTi (t)βw. Then the model for the continuous response becomes

W ∗i (t) = xT
i (t)αw(t) + εwi(t), (1)

which is a varying coefficient model (Cleveland et al., 1992; Hastie and Tib-

shirani, 1993). To estimate αw(t) in this model, we employ local linear fitting

techniques (Fan and Gijbels, 1996), which leads to the following solution for the

regression coefficients:

α̂w(t) = (Ip,0p)(ΛTκΛ)−1ΛTκW∗,

where Ip is the p × p identity matrix, 0p is the p × p matrix of zeros, Λ =

(Λ1, . . . ,Λn)
T

, Λi = ((1, ti1 − t)⊗ xi1, . . . , (1, tini
− t)⊗ xi ni

), and κ is an

N ×N diagonal matrix with the kernel weights along its diagonal.

Let x = (xT
1 , . . . ,x

T
n )T, z = (zT1 , . . . , z

T
n )T, m = (mT

1 , . . . ,m
T
n )T with mi =

(xT
i (ti1)αw(ti1), . . . ,xT

i (ti ni)αw(ti ni))
T, and ε = (εT1 , . . . , ε

T
n )T with εi = (εi(ti1), . . . , εn(tini))

T.

Then (1) can be rewritten as

W − zβ = m + ε, (2)
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where W =
(
W

T

1 , . . . ,W
T

n

)T
with Wi = (Wi(ti1), . . . ,Wi(tini))

T
. This local

linear regression produces an estimator linear in W ∗i (t) (Fan and Gijbels, 1996),

so that the estimate of αw(·) is linear in W−zβ, and the estimator of m is m̂ =

S(W − zβ). S, which depends only on {tij ,xi(tij), j = 1, . . . , ni, i = 1, . . . , n},
is usually referred to as the smoothing matrix of the local linear smoother.

Substituting m̂ in (2), we obtain

(IN − S)W = (IN − S)zβ + ε.

To estimate βw more efficiently, we use weighted least squares, which yields

β̂w = {zT(IN − S)TR(IN − S)z}−1zT(IN − S)TR(IN − S)W,

where β̂w is the profile weighted least squares estimator (Fan et al., 2007),

z = (zT1 , . . . , z
T
n )T, W =

(
W

T

1 , . . . ,W
T

n

)T
with Wi = (Wi(ti1), . . . ,Wi(tini

))
T

,

R is the working covariance matrix, and S is the smoothing matrix of the local

linear smoother. Misspecification of the working covariance matrix affects only

the efficiency, not the consistency, of this estimator, whereas the local linear

estimator (2) is not significantly affected by the covariance structure since the

data are localized in time (Fan et al., 2007).

It is necessary to derive pointwise confidence intervals for the nonparametric

component αw(·), and to do so we need an estimate of the asymptotic covariance

matrix. We use the sandwich estimator

ĉov{α̂w(t0)} ≈ (Ip,0p)(ΛTκΛ)−1
(
ΛTκQκΛ

)
(ΛTκΛ)−1(Ip,0p)T,

where Q = diag(e1, . . . , en), with ei = (e2i (ti1), . . . , e2i (ti ni))
T and ei(t) =

Wi(t)− {xT
i (t)α̂w(t) + zTi (t)β̂w}.

When the weight matrix R does not depend on the continuous response W,

the estimated covariance matrix for β̂w is obtained using the sandwich formula

ĉov(β̂w) = D−1VD−1,

where D = zT(IN − S)TR(IN − S)z and V = zT(IN − S)TRQRT(IN − S)z.

After we fit a semivarying coefficient model to the continuous response and

obtain the residuals from this fit, we move to the second stage. In the sec-

ond stage we fit a generalized time-varying coefficient model for the conditional

model. Cai et al. (2000) introduced generalized varying coefficient models for

independent and identically distributed data. We adapt these models to a lon-

gitudinal setting.
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We start by locally approximating the functions in a neighborhood of a fixed

point t0 via the Taylor expansion:

γr(t) ≈ γr(t0) + γ′r(t0)(t− t0) ≡ a∗r + b∗r(t− t0), (3)

for r = 1, . . . , p+ q+ 1. Let a∗ = (a∗1, . . . , a
∗
p+q+1)T and b∗ = (b∗1, . . . , b

∗
p+q+1)T.

For subject i, let x∗i (t) =
(
xT
i (t), zTi (t), ei(t)

)T
. We maximize the local likeli-

hood

`n(a∗,b∗) =
1

N

n∑
i=1

ni∑
j=1

`

(
g−1

[
p+q+1∑
r=0

{a∗r + b∗r(t− t0)}x∗ir(t)

]
, Qi(t)

)
Kh2

(t−t0),

(4)

where g(·) is a link function, and h2 is the bandwidth for the second stage. Since

we showed in Section 2.1 that Qi(t) given Wi(t) follows a probit model, the link

function should be probit, in which case (4) becomes

`n(a
∗,b∗) =

1

N

∑
Qi(t)=1

log

φ
p+1∑
r=0

{a∗r + b∗r(t− t0)}x∗ir(t)

Kh2
(t− t0) (5)

+
1

N

∑
Qi(t)=0

log

1− φ

p+1∑
r=0

{a∗r + b∗r(t− t0)}x∗ir(t)

Kh2
(t− t0),

where φ(·) is the probability density function for the standard normal distri-

bution. We find the solutions to (5) by adapting the iterative local maximum

likelihood algorithm described in Cai et al. (2000) to a longitudinal setting, as

follows.

Let a
∗(k)
r and b

∗(k)
r be the values of a∗r and b∗r , respectively, at the kth itera-

tion. Let `′n(a∗,b∗) and `′′n(a∗,b∗) be the gradient and Hessian matrix for the

local likelihood (4). Then we update (a∗,b∗) according to(
a∗(k+1)

b∗(k+1)

)
=

(
a∗(k)

b∗(k)

)
−
{
`′′n(a∗(k),b∗(k))

}−1
`′n(a∗(k),b∗(k)).

The solution of this iterative regression algorithm satisfies `′(a∗,b∗) = 0, and

the estimators are given by â∗ = γ̂(t0) = (γ̂1(t0), . . . , γ̂p+q+1(t0))T and b̂∗ =

(γ̂′1(t0), . . . , γ̂′p+q+1(t0))T.

Let I be the identity matrix with size p + q + 1 and 0 be a size p + q + 1

matrix with each entry equal to zero. Then the asymptotic covariance matrix

of the estimator γ̂(t0) can be estimated using the sandwich formula

ĉov{γ̂(t0)} = (I,0)Γ̂(t0)−1∆̂(t0)Γ̂(t0)−1(I,0)T,
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where
Γ̂(t0) =

1

N

n∑
i=1

ni∑
j=1

$2

p+q+1∑
r=0

{
â
∗
r + b̂

∗
r(t− t0)

}
x
∗
ir(t), Qi(t)

Kh2
(t− t0)

(
x∗
i (t)

x∗
i (t)(t− t0)

)⊗ 2

∆̂(t0) =
h

N

n∑
i=1

ni∑
j=1

$
2
1

p+q+1∑
r=0

{
â
∗
r + b̂

∗
r(t− t0)

}
x
∗
ir(t), Qi(t)

K
2
h2

(t− t0)

(
x∗
i (t)

x∗
i (t)(t− t0)

)⊗ 2

with $d(A,B) = (∂d/∂Ad)`{g−1(A),B}, and C
⊗

2 denotes CCT for a matrix

or vector C.

2 Asymptotics

The asymptotic behavior of our first-stage estimators was presented by Fan

et al. (2007). Both estimators are asymptotically normally distributed. The

most efficient estimator of βw is obtained when one uses the inverse of the

true variance–covariance matrix of the errors as the weight matrix. However,

a working independence correlation structure could also be used, in which case

the resulting estimate would still be root-n consistent. For the nonparametric

component αw(t), the choice of working correlation structure does not affect the

asymptotic bias and variance, which have similar forms to those of the varying

coefficient model (Cai et al., 2000).

Kürüm et al. (in press) studied the asymptotic behavior of the estimators in

the second stage of our procedure. According to their results, the estimators of

the regression coefficients in this stage are asymptotically normally distributed.

Note that, in addition to the usual regularity conditions, this result requires the

under-smoothing condition Nh1 → 0. The asymptotic biases of these estimators

are also similar to those for varying coefficient models (Cai et al., 2000).

3 Bandwidth Selection

For methods based on kernel smoothing, selecting a suitable bandwidth is an

important issue. We recommend using the leave-one-out cross validation method

for both stages of our estimation procedure. In a longitudinal study, where intra-

subject dependence exists, this approach is more appropriate than leaving out

a single observation (Hoover et al., 1998). Specifically, we propose minimizing

the following cross validation score:

CV (h) =
∑
i

‖Vi − V̂−i‖2,
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where Vi denotes the observed value of the response V for subject i and V̂−i is

the fitted value of this response with subject i excluded. For choosing the first-

and second-stage bandwidths, V stands for the continuous and binary responses,

respectively. We compute the cross validation score for a range of bandwidths

and select the bandwidth that minimizes the score.

We suggest employing a bimodal kernel (De Brabanter et al., 2011) to obtain

more accurate estimates in the presence of intra-subject dependence. A bimodal

kernel prevents undersmoothing by removing serial dependence through down

weighting observations that are very close to t0. We use a member of the so

called ε-optimal class of bimodal kernels suggested by De Brabanter et al. (2011).

Specifically, we use

Kε(u) =
4

4− 3ε− ε2

 3
4 (1− u2)1{|u| ≤ 1} if |u| ≥ ε
3
4
1−ε2

ε |u| if |u| < ε

with ε = 0.1, where 1{·} denotes the indicator function.
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