@PLOS | susmission

S2 Text

Proofs on Screening Requirements for Eradication. For sake of conciseness we
omit the subscript v in this section. Before we state our proofs, let us make some
observations about the expected prevalence level immediately after the n'* screening
round:
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Let us specifically focus on the parameter A,,. Note that a larger value of A,, implies a
lower prevalence level after the screening round and vice versa. Recall that the impact
of a screening round is estimated as (see main text):
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This implies for any n > 1:
K
A, = -1 2
7(57) ?)
- K 1 3)
(I—p-s)-f(Sn)
K
= -1 4
(1=p- ) ma e W
=« An—l + ﬁ (5)
:an'AO‘i‘Zan_i'B (6)
i=1
JamAg+ B ifa#l o
Ao +n-8 ifa=1

T 11386_” T, B = p °—,and Ag = %0) — 1. Note that «, 8, and Aq are strictly

positive. These observatlons and definitions allow us to prove the following results.
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Lemma 1. If 7 < M

mcereasing in n.

, then lim, _,o, A, = 00 and A, is discretely conver and

Proof. First, rewriting yields that the condition 7 < M is equivalent to the

condition o = 1_1 e *7 > 1. The result now follows 1mmed1ately from Eq. (7)) and by

the observations fu)hat Ag > 0and 5> 0. If & > 1 these imply that:

lim A, > lim a"Ag = o0 (8)
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Furthermore, if @ = 1, it holds that:
lim A, = lim Ag+n-8 =00 (9)
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The discrete convexity of A, is trivial for the case that o = 1, since A,, is linear in n
in this case. If a > 1, the convexity follows from the fact that every function having the
form ¢ - a™ + d is convex in n for ¢ > 0 and « > 0. Finally, the fact that A,, is
increasing in n follows directly from Eq @
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Lemma 2. If 7 > M, then then the sequence {An} converges monotonically to

_ B
A = 1—a-
Proof. First, rewriting yields that the condition 7 > M is equivalent to the
condition a = ljp_se_"” < 1. The fact that the sequence converges to A now follows
immediately by taking the limit in Eq. :
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To prove that A,, converges monotonically to A, we distinguishing two cases:
A, < Aand A,_1 > A, (it is obvious for A, _; = A). First, consider the case that
A,_1 < A. We show that A,, < A, and that A, — A,,_1 > 0, implying monotonicity.
The first claim is implied by Eq. @:
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To prove the second claim we make use of the given that a < 1:
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Next, consider the case that A, 1 > A. Using on exactly the same reasoning as the one
presented above, it follows that A, > A as well, and that A, — A,,_1 <O0.
This completes the proof. O

Now we have established the (long term) behavior of the parameter A,,, let us
consider the implications for the (long term) prevalence level. Recall that fn)n+1
denotes the expected average prevalence level faced between screening rounds n and
n + 1, which is calculated as:
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Using this definition, we now prove the desired results:
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Proposition 1. If 7 <

Proof. From Lemma, [1] we know that lim,, ., A, = co. Hence, we derive that:
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Proposition 2. If 7 > —1081=P9) yhen limy, o fons1 =K (W + 1).

Proof. From Lemma [2| we know that lim, ,., A, = A = £ Hence, we derive that:
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