S2 Text

Proofs on Screening Requirements for Eradication. For sake of conciseness we omit the subscript v in this section. Before we state our proofs, let us make some observations about the expected prevalence level immediately after the n^{th} screening round:

$$
f(S_n^+) = \frac{K}{1 + A_n} \tag{1}
$$

Let us specifically focus on the parameter A_n . Note that a larger value of A_n implies a lower prevalence level after the screening round and vice versa. Recall that the impact of a screening round is estimated as (see main text):

$$
f_v(S_{vn}^+) = (1 - p_{vn} \cdot s) f_v(S_{vn}^-),
$$

This implies for any $n \geq 1$:

$$
A_n = \frac{K}{f(S_n^+)} - 1\tag{2}
$$

$$
=\frac{K}{(1-p\cdot s)\cdot f(S_n^-)}-1\tag{3}
$$

$$
=\frac{K}{(1-p\cdot s)\cdot\frac{K}{1+A_{n-1}\cdot e^{-\kappa\cdot\tau}}}-1\tag{4}
$$

$$
= \alpha \cdot A_{n-1} + \beta \tag{5}
$$

$$
= \alpha^n \cdot A_0 + \sum_{i=1}^n \alpha^{n-i} \cdot \beta \tag{6}
$$

$$
= \begin{cases} \alpha^n \cdot A_0 + \beta \frac{\alpha^n - 1}{\alpha - 1} & \text{if } \alpha \neq 1 \\ A_0 + n \cdot \beta & \text{if } \alpha = 1 \end{cases}
$$
 (7)

Here, $\alpha = \frac{1}{1-p \cdot s} e^{-\kappa \cdot \tau}$, $\beta = \frac{p \cdot s}{1-p \cdot s}$, and $A_0 = \frac{K}{f(0)} - 1$. Note that α , β , and A_0 are strictly positive. These observations and definitions allow us to prove the following results.

Lemma 1. If $\tau \leq \frac{-\log(1-p \cdot s)}{r}$ $\frac{(1-p \cdot s)}{\kappa}$, then $\lim_{n \to \infty} A_n = \infty$ and A_n is discretely convex and increasing in n.

Proof. First, rewriting yields that the condition $\tau \leq \frac{-\log(1-p\cdot s)}{r}$ $\frac{1-p \cdot s}{\kappa}$ is equivalent to the condition $\alpha = \frac{1}{1-p\cdot s}e^{-\kappa \cdot \tau} \geq 1$. The result now follows immediately from Eq. [\(7\)](#page-0-0) and by the observations that $A_0 > 0$ and $\beta > 0$. If $\alpha > 1$ these imply that:

$$
\lim_{n \to \infty} A_n > \lim_{n \to \infty} \alpha^n A_0 = \infty
$$
\n(8)

Furthermore, if $\alpha = 1$, it holds that:

$$
\lim_{n \to \infty} A_n = \lim_{n \to \infty} A_0 + n \cdot \beta = \infty
$$
\n(9)

The discrete convexity of A_n is trivial for the case that $\alpha = 1$, since A_n is linear in n in this case. If $\alpha > 1$, the convexity follows from the fact that every function having the form $c \cdot \alpha^n + d$ is convex in n for $c \ge 0$ and $\alpha \ge 0$. Finally, the fact that A_n is increasing in n follows directly from Eq (6) .

 \Box

Lemma 2. If $\tau > \frac{-\log(1-p\cdot s)}{\kappa}$, then then the sequence $\{A_n\}$ converges monotonically to $A=\frac{\beta}{1-\alpha}$.

Proof. First, rewriting yields that the condition $\tau > \frac{-\log(1-p \cdot s)}{\kappa}$ is equivalent to the condition $\alpha = \frac{1}{1-p \cdot s} e^{-\kappa \cdot \tau} < 1$. The fact that the sequence converges to A now follows immediately by taking the limit in Eq. [\(7\)](#page-0-0):

$$
\lim_{n \to \infty} A_n = \lim_{n \to \infty} \alpha^n \cdot A_0 + \beta \frac{\alpha^n - 1}{\alpha - 1} \tag{10}
$$

$$
=\frac{\beta}{1-\alpha}=A\tag{11}
$$

To prove that A_n converges monotonically to A , we distinguishing two cases: $A_{n-1} < A$ and $A_{n-1} > A$, (it is obvious for $A_{n-1} = A$). First, consider the case that $A_{n-1} < A$. We show that $A_n < A$, and that $A_n - A_{n-1} > 0$, implying monotonicity. The first claim is implied by Eq. [\(6\)](#page-0-1):

$$
A_n = \alpha \cdot A_{n-1} + \beta \tag{12}
$$

$$
\langle \alpha \cdot \frac{\beta}{1-\alpha} + \beta \tag{13}
$$

$$
=\frac{\beta}{1-\alpha}=A\tag{14}
$$

To prove the second claim we make use of the given that $\alpha < 1$:

$$
A_n - A_{n-1} = \alpha \cdot A_{n-1} + \beta - A_{n-1}
$$
\n(15)

$$
= (\alpha - 1) A_{n-1} + \beta \tag{16}
$$

$$
> (\alpha - 1) \frac{\beta}{1 - \alpha} + \beta = 0 \tag{17}
$$

Next, consider the case that $A_{n-1} > A$. Using on exactly the same reasoning as the one presented above, it follows that $A_n > A$ as well, and that $A_n - A_{n-1} < 0$.

This completes the proof.

Now we have established the (long term) behavior of the parameter A_n , let us consider the implications for the (long term) prevalence level. Recall that $\bar{f}_{n,n+1}$ denotes the expected average prevalence level faced between screening rounds n and $n + 1$, which is calculated as:

$$
\bar{f}_{n,n+1} = \frac{1}{\tau} \int_0^{\tau} \frac{K}{1 + A_n \cdot e^{-\kappa \cdot t}} dt
$$
\n(18)

$$
= \frac{K}{\kappa \cdot \tau} \log \left(\frac{A_n + e^{\kappa \cdot \tau}}{A_n + 1} \right) \tag{19}
$$

Using this definition, we now prove the desired results:

Proposition 1. If $\tau \leq \frac{-\log(1-p \cdot s)}{s}$ $\frac{(1-p\cdot s)}{\kappa}$, then $\lim_{n\to\infty} \bar{f}_{n,n+1} = 0$.

Proof. From Lemma [1](#page-0-2) we know that $\lim_{n\to\infty} A_n = \infty$. Hence, we derive that:

 \Box

$$
\lim_{n \to \infty} \bar{f}_{n,n+1} = \lim_{n \to \infty} \frac{K}{\kappa \cdot \tau} \log \left(\frac{A_n + e^{\kappa \cdot \tau}}{A_n + 1} \right) \tag{20}
$$

$$
=\frac{K}{\kappa \cdot \tau} \log\left(1\right) = 0\tag{21}
$$

 \Box

Proposition 2. If $\tau > \frac{-\log(1-p \cdot s)}{\kappa}$, then $\lim_{n \to \infty} \bar{f}_{n,n+1} = K\left(\frac{\log(1-p \cdot s)}{\kappa \cdot \tau} + 1\right)$.

Proof. From Lemma [2](#page-1-0) we know that $\lim_{n\to\infty} A_n = A = \frac{\beta}{1-\alpha}$. Hence, we derive that:

$$
\lim_{n \to \infty} \bar{f}_{n,n+1} = \lim_{n \to \infty} \frac{K}{\kappa \cdot \tau} \log \left(\frac{A_n + e^{\kappa \cdot \tau}}{A_n + 1} \right) \tag{22}
$$

$$
= \frac{K}{\kappa \cdot \tau} \log \left((1 - p \cdot s) e^{\kappa \cdot \tau} \right) \tag{23}
$$

$$
= K\left(\frac{\log\left(1 - p \cdot s\right)}{\kappa \cdot \tau} + 1\right) \tag{24}
$$

 \Box