
S2 Text

Proofs on Screening Requirements for Eradication. For sake of conciseness we
omit the subscript v in this section. Before we state our proofs, let us make some
observations about the expected prevalence level immediately after the nth screening
round:

f(S+
n ) =

K

1 +An
(1)

Let us specifically focus on the parameter An. Note that a larger value of An implies a
lower prevalence level after the screening round and vice versa. Recall that the impact
of a screening round is estimated as (see main text):

fv(S
+
vn) = (1− pvn · s) fv(S−vn),

This implies for any n ≥ 1:

An =
K

f(S+
n )
− 1 (2)

=
K

(1− p · s) · f(S−n )
− 1 (3)

=
K

(1− p · s) · K
1+An−1·e−κ·τ

− 1 (4)

= α ·An−1 + β (5)

= αn ·A0 +

n∑
i=1

αn−i · β (6)

=

{
αn ·A0 + β α

n−1
α−1 if α 6= 1

A0 + n · β if α = 1
(7)

Here, α = 1
1−p·se

−κ·τ , β = p·s
1−p·s , and A0 = K

f(0) − 1. Note that α, β, and A0 are strictly

positive. These observations and definitions allow us to prove the following results.

Lemma 1. If τ ≤ − log(1−p·s)
κ , then limn→∞An =∞ and An is discretely convex and

increasing in n.

Proof. First, rewriting yields that the condition τ ≤ − log(1−p·s)
κ is equivalent to the

condition α = 1
1−p·se

−κ·τ ≥ 1. The result now follows immediately from Eq. (7) and by
the observations that A0 > 0 and β > 0. If α > 1 these imply that:

lim
n→∞

An > lim
n→∞

αnA0 =∞ (8)

Furthermore, if α = 1, it holds that:

lim
n→∞

An = lim
n→∞

A0 + n · β =∞ (9)

The discrete convexity of An is trivial for the case that α = 1, since An is linear in n
in this case. If α > 1, the convexity follows from the fact that every function having the
form c · αn + d is convex in n for c ≥ 0 and α ≥ 0. Finally, the fact that An is
increasing in n follows directly from Eq (6).
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Lemma 2. If τ > − log(1−p·s)
κ , then then the sequence {An} converges monotonically to

A = β
1−α .

Proof. First, rewriting yields that the condition τ > − log(1−p·s)
κ is equivalent to the

condition α = 1
1−p·se

−κ·τ < 1. The fact that the sequence converges to A now follows

immediately by taking the limit in Eq. (7):

lim
n→∞

An = lim
n→∞

αn ·A0 + β
αn − 1

α− 1
(10)

=
β

1− α
= A (11)

To prove that An converges monotonically to A, we distinguishing two cases:
An−1 < A and An−1 > A, (it is obvious for An−1 = A). First, consider the case that
An−1 < A. We show that An < A, and that An −An−1 > 0, implying monotonicity.
The first claim is implied by Eq. (6):

An = α ·An−1 + β (12)

< α · β

1− α
+ β (13)

=
β

1− α
= A (14)

To prove the second claim we make use of the given that α < 1:

An −An−1 = α ·An−1 + β −An−1 (15)

= (α− 1)An−1 + β (16)

> (α− 1)
β

1− α
+ β = 0 (17)

Next, consider the case that An−1 > A. Using on exactly the same reasoning as the one
presented above, it follows that An > A as well, and that An −An−1 < 0.

This completes the proof.

Now we have established the (long term) behavior of the parameter An, let us
consider the implications for the (long term) prevalence level. Recall that f̄n,n+1

denotes the expected average prevalence level faced between screening rounds n and
n+ 1, which is calculated as:

f̄n,n+1 =
1

τ

∫ τ

0

K

1 +An · e−κ·t
dt (18)

=
K

κ · τ
log

(
An + eκ·τ

An + 1

)
(19)

Using this definition, we now prove the desired results:

Proposition 1. If τ ≤ − log(1−p·s)
κ , then limn→∞ f̄n,n+1 = 0.

Proof. From Lemma 1 we know that limn→∞An =∞. Hence, we derive that:
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lim
n→∞

f̄n,n+1 = lim
n→∞

K

κ · τ
log

(
An + eκ·τ

An + 1

)
(20)

=
K

κ · τ
log (1) = 0 (21)

Proposition 2. If τ > − log(1−p·s)
κ , then limn→∞ f̄n,n+1 = K

(
log(1−p·s)

κ·τ + 1
)
.

Proof. From Lemma 2 we know that limn→∞An = A = β
1−α . Hence, we derive that:

lim
n→∞

f̄n,n+1 = lim
n→∞

K

κ · τ
log

(
An + eκ·τ

An + 1

)
(22)

=
K

κ · τ
log ((1− p · s) eκ·τ ) (23)

= K

(
log (1− p · s)

κ · τ
+ 1

)
(24)
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