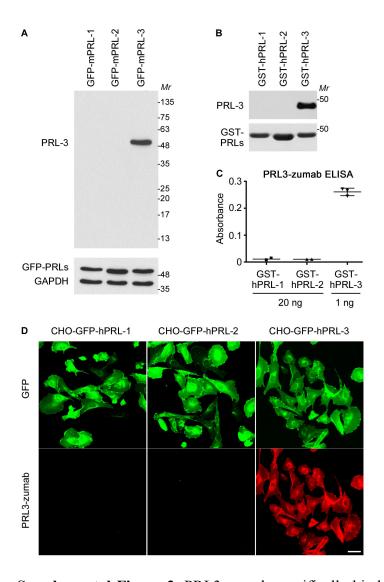
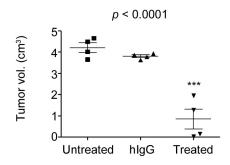
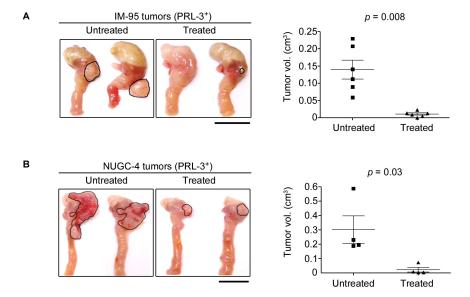
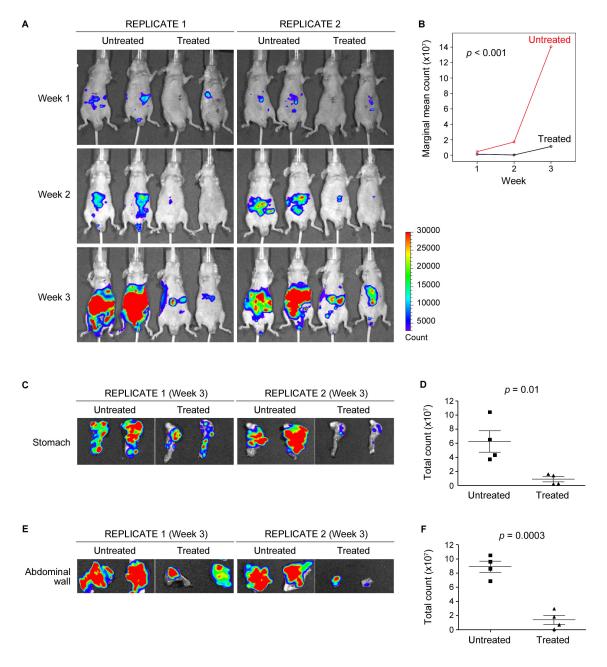
Supplemental Material


PRL3-zumab, A First-in-Class Humanized Antibody for Cancer Therapy

Min Thura^{1†}, Abdul Qader Omer Al-Aidaroos^{1†}, Wei Peng Yong^{2,3}, Koji Kono^{3,4}, Abhishek Gupta¹, You Bin Lin¹, Kousaku Mimura³, Jean Paul Thiery^{1,3}, Boon Cher Goh^{2,3}, Patrick Tan⁵, Ross Soo^{2,3}, Cheng William Hong⁶, Lingzhi Wang³, Suling Joyce Lin⁵, Elya Chen⁴, Sun Young Rha⁷, Hyun Cheol Chung⁷, Jie Li¹, Sayantani Nandi¹, Hiu Fung Yuen¹, Shu-Dong Zhang⁸, Yeoh Khay Guan⁹, Jimmy So^{9,10}, and Qi Zeng^{1*}




Supplemental Figure 1. PRL-3 is not expressed in most normal adult human tissues, but strongly expressed in human gastric tumors. **(A)** Multiple normal human tissues from various organs were analyzed by immunohistochemistry (IHC) for PRL-3 protein. **(B)** By IHC, PRL-3 protein was not detected in an adjacent normal gastric tissue section, but was strongly detected in gastric tumor section from the same patient. *Bar*, 50µm.


Supplemental Figure 2. PRL3-zumab specifically binds to both murine and human PRL-3, but not to their homologues PRL-1 or PRL-2. (**A**) Western blotting of Chinese Hamster ovary (CHO) cells overexpressing GFP-tagged murine isoforms of PRL-1 (GFP-mPRL-1), PRL-2 (GFP-mPRL-2), or PRL-3 (GFP-mPRL-3). Blots were probed with PRL3-zumab (upper panel), or anti-GFP and anti-GAPDH antibodies concurrently (lower panel). (**B**) Western blotting of 1 ng of GST-tagged recombinant human isoforms of PRL-1 (GST-hPRL-1), PRL-2 (GST-hPRL-2), or PRL-3 (GST-hPRL-3). Blots were probed with PRL3-zumab (upper panel) or anti-GST antibodies (lower panel). (**C**) ELISA analysis of PRL3-zumab specific binding to recombinant GST-hPRLs. PRL3-zumab readily binds GST-hPRL-3, but not 20-fold higher amounts of GST-hPRL-1 or GST-hPRL-2. n = 3 per analysis; p < 0.001, one-way ANOVA; data representing mean \pm SD. (**D**) Immunofluorescence staining of CHO cells overexpressing GFP-hPRL-1, GFP-hPRL-2, or GFP-hPRL-3 using PRL3-zumab. *Red*, PRL3-zumab signal. *Green*, GFP-hPRL signal. *Bar*, 40 μm.

Supplemental Figure 3. PRL3-zumab, but not human IgG isotype control, suppresses PRL-3-positive gastric tumor growth *in vivo*. Eight-week old male BALB/C nude mice were implanted with PRL-3-positive SNU-484 cell lines to induce orthotopic gastric tumors. The dot plot indicates the mean tumor volume of SNU-484 tumors in untreated, human IgG-treated (hIgG), and PRL3-zumab-treated mice. p < 0.0001, one-way ANOVA; n = 4 per group, data representing mean \pm SEM. ***p < 0.001, Tukey's post-hoc test (untreated vs treated groups).

Supplemental Figure 4. PRL3-zumab blocks orthotopic PRL-3⁺ gastric tumors. Eight-week old male BALB/C *nude* mice were implanted with PRL-3⁺ IM-95 or NUGC-4 gastric cancer cells to induce orthotopic PRL-3⁺ gastric tumors. At the end of the experiment, visible tumors (outlined in black) were measured and volumes compared. **(A)** Stomachs with IM-95 tumors from untreated and PRL3-zumab-treated mice. *Bar*, 10 mm. *Rightmost panel*, mean tumor volumes. p = 0.008, t-test; n = 6 per group, data representing mean \pm SEM. **(B)** Stomachs with NUGC-4 tumors from untreated and PRL3-zumab-treated mice. *Bar*, 10 mm. *Rightmost panel*, mean tumor volumes. p = 0.03, t-test; t = 4 per group, data representing mean t = 4 SEM.

Supplemental Figure 5. PRL3-zumab inhibits local and metastatic abdominal tumors formed by PRL-3⁺ HCT116 colorectal cancer cells implanted within the stomach. HCT116-luc2 cells were implanted into the gastric subserosa layer of mice stomachs to mimic secondary colorectal cancer metastasis to the gastric niche. PRL3-zumab treatment reduced growth of HCT116-luc2 tumors in the gastric niche. (A) IVIS imaging of global *in vivo* tumor growth over 3 weeks post-inoculation. (B) Mice from (A) were analyzed for whole-animal IVIS intensity changes over time. n = 4 per group; p < 0.001, two-way ANOVA. (C) Tumor burden in excised stomachs at the end of week 3. (D) Stomachs from (C) were analyzed for differences in IVIS intensity. n = 4 per group; p = 0.01, t-test; data representing mean \pm SEM. (E) Metastatic tumor burden within abdominal walls at the end of week 3. (F) Stomachs from (E) were analyzed for differences in IVIS intensity. n = 4 per group; p = 0.0003, t-test; data representing mean \pm SEM.

Supplemental Table 1. Clinical characteristics of SGset1 gastric cancer patient cohort.

	SGset1 $(n = 185)$
Age (years)	
Range	23.4 – 92.9 (1 missing)
Mean \pm S.D.	$64 \pm 12.9 (1 \text{ missing})$
Gender (%)	
Male	68 (36.8)
Female	116 (62.7)
Missing	1 (0.54)
Stage (%)	
1	29 (15.7)
2	30 (16.2)
3	66 (35.7)
4	59 (31.9)
Missing	1 (0.54)
Lauren's histopathology (%)	
Intestinal	92 (49.7)
Diffuse	72 (38.9)
Mixed/unclassifiable	20 (10.8)
Missing	1 (0.54)
Helicobactor Pylori status (%)	
Positive	59 (31.9)
Negative	37 (20.0)
Missing	89 (48.1)
Median overall survival (months)	22.5 (1 missing)
Number of overall death events	110 (2 missing)

Supplemental Table 2. Univariate and multivariate Cox regression analysis of PRL-3 expression in SGset1 cohort.

	Category	HR (95% C.I.)	<i>p</i> -value
Univariate Cox	Med vs Low	2.35 (1.42 – 3.87)	0.0008
(PRL-3 expression)	High vs Low	1.94(1.17 - 3.21)	0.01
Multivariate Cox	Med vs Low	1.99 (1.19 – 3.33)	0.009
(PRL-3 expression,	High vs Low	1.76(1.76 - 2.95)	0.03
tumor stage)			

Supplemental Table 3. ANOVA analysis of SNU-484 tumor volume after treatment (from Main Figure 4A).

Factor assessed	p value ^a
Control vs PRL3-zumab	< 0.001
Control vs PRL3-zumab/5-FU	< 0.001
Control vs 5-FU	< 0.001
PRL3-zumab vs control	< 0.001
PRL3-zumab vs PRL3-zumab/5-FU	< 0.001
PRL3-zumab vs 5-FU	< 0.001
PRL3-zumab/5-FU vs control	< 0.001
PRL3-zumab/5-FU vs PRL3-zumab	< 0.001
PRL3-zumab/5-FU vs 5-FU	< 0.001
5-FU vs control	< 0.001
5-FU vs PRL3-zumab	< 0.001
5-FU vs PRL3-zumab/5-FU	< 0.001

^ap values calculated using post-hoc Tukey's HSD test

Supplemental Table 4. ANOVA analysis of WBC counts after treatment (from Main Figure 4B).

Factor assessed	p value ^a
Control vs PRL3-zumab	0.438
Control vs PRL3-zumab/5-FU	< 0.001
Control vs 5-FU	< 0.001
PRL3-zumab vs control	0.438
PRL3-zumab vs PRL3-zumab/5-FU	< 0.001
PRL3-zumab vs 5-FU	< 0.001
PRL3-zumab/5-FU vs control	< 0.001
PRL3-zumab/5-FU vs PRL3-zumab	< 0.001
PRL3-zumab/5-FU vs 5-FU	0.836
5-FU vs control	< 0.001
5-FU vs PRL3-zumab	< 0.001
5-FU vs PRL3-zumab/5-FU	0.836

^ap values calculated using post-hoc Tukey's HSD test