	Non-diabetes (n=5) Diabetes (n=5)		p-value
Age (yr)	61.7 ± 7.4	61.6 ± 8.9	0.987
Gender	Males	Males	-
BMI (kg/m ²)	26.2 ± 1.9	35.9 ± 6.9	0.016
HbA1c (%)	5.6 ± 2.0	7.0 ± 1.1	0.027
SBP (mmHg)	147.0 ± 11.0	134.0 ±12.0	0.149
DBP (mmHg)	81.0 ± 8.0	72.0 ± 8.0	0.095
Cholesterol (mM)	4.1 ± 0.9	4.3 ± 1.0	0.818
LDL (mM)	2.2 ± 0.7	2.0 ± 0.6	0.531
HDL (mM)	1.2 ± 0.4	1.0 ± 0.3	0.382

Clinical Characterization of Patients with Cardiovascular Disease

Supplemental Table 1

Result of ANOVA Analysis

Figure	Factor	P value for	Interaction	P value for
_	Variable	main effect		interaction
Figure 1F	Gene	< 0.001	Gene#Insulin	0.01
	Insulin	< 0.001		
Figure 1H	Gene	< 0.001	Gene#Insulin	0.07
	Insulin	< 0.001		
Figure 2A	Gene	0.39	Gene#Time	0.83
	Time	< 0.001	Gene#Diet	0.58
	Diet	< 0.001	Time#Diet	< 0.001
			Gene#Time#Diet	0.97
Figure 2B	Gene	0.76	Gene#Time	0.96
	Time	< 0.001	Gene#Diet	0.78
	Diet	0.01	Time#Diet	< 0.12
			Gene#Time#Diet	0.97
Figure 2E	Gene	< 0.001	Gene#Diet	0.001
	Diet	< 0.001		
Figure 2I	Gene	< 0.001	Gene#Insulin	< 0.01
p-AKT	Insulin	< 0.001	Gene#Diet	0.14
	Diet	< 0.001	Insulin#Diet	< 0.001
			Gene#Insulin#Diet	0.25
Figure 2I	Gene	< 0.001	Gene#Insulin	< 0.001
p-eNOS	Insulin	< 0.001	Gene#Diet	0.1
	Diet	< 0.001	Insulin#Diet	<0.001
			Gene#Insulin#Diet	0.17
Figure 3B	Gene	0.001	Gene#Insulin	0.18
VCAM1	Insulin	0.005	Gene#Ox-LDL	0.004
	Ox-LDL	< 0.001	Insulin#Ox-LDL	0.03
			Gene#Insulin#Ox-LDL	0.11
Figure 3B	Gene	< 0.001	Gene#Insulin	< 0.001
p-AKT	Insulin	< 0.001	Gene#Ox-LDL	0.19
	Ox-LDL	< 0.001	Insulin#Ox-LDL	< 0.001
			Gene#Insulin#Ox-LDL	0.05
Figure 3C	Gene	< 0.001	Gene#Insulin	0.49
	Insulin	0.04	Gene#Ox-LDL	< 0.001
	Ox-LDL	< 0.001	Insulin#Ox-LDL	0.17
			Gene#Insulin#Ox-LDL	0.9
Figure 3D	Gene	0.002	Gene#Insulin	0.29
Insulin's effect	Insulin	0.04	Gene#Ox-LDL	0.002
	Ox-LDL	< 0.001	Insulin#Ox-LDL	0.02
			Gene#Insulin#Ox-LDL	0.26
Figure 3D	Gene	0.004	Gene#Antibody	< 0.05
Antibody effect	Antibody	0.01		
Figure 3F	Gene	< 0.001	Gene#Diet	0.89
p-AKT	Diet	< 0.001		
Figure 3F	Gene	< 0.001	Gene#Diet	0.002
p-eNOS	Diet	< 0.001		

Figure 4A	Gene	0.4	Gene#Diet	0.6
	Diet	< 0.001		
Figure 4B	Gene	0.02	Gene#Diet	0.01
Endothelium	Diet	< 0.001		
Figure 4B	Gene	< 0.001	Gene#Diet	0.004
Smooth Muscle Cells	Diet	< 0.001		
Figure 4E	Gene	< 0.001	Gene#Insulin	< 0.001
_	Insulin	< 0.001		
Figure 4F	Gene	< 0.001	Gene#Time	< 0.001
	Time	< 0.001		
Figure 5B	Insulin	< 0.001	Insulin#Inhibitor	0.01
	Inhibitor	< 0.001		
Figure 5C	Gene	< 0.001	Gene#Insulin	< 0.001
	Insulin	< 0.001		
Figure 5F	Gene	< 0.001	Gene#Insulin	< 0.001
	Insulin	< 0.001	Gene#Inhibitor	< 0.001
	Inhibitor	< 0.001	Insulin#Inhibitor	< 0.001
			Gene#Insulin#Inhibitor	0.02
Figure 6D	Gene	< 0.001	Gene#Diet	< 0.001
	Diet	< 0.001	Gene#Inhibitor	< 0.001
	Inhibitor	< 0.001	Diet#Inhibitor	< 0.001
			Gene#Diet#Inhibitor	< 0.001
Figure 7A	Gene	< 0.001	Gene#Insulin	< 0.001
	Insulin	< 0.001		
Figure 7C	Gene	0.01	Gene#Diet	0.02
	Diet	< 0.001		
Figure 7D	Gene	0.04	NA	NA
Figure 8B	Gene	0.003	NA	NA
Figure 8D	Gene	< 0.05	NA	NA
Figure 9C	Gene	0.002	NA	NA
	Diet	< 0.001		
Figure 9E	Gene	0.003	NA	NA
Macrophages	Diet	< 0.001		
Figure 9E	Gene	0.002	NA	NA
Collagen	Diet	< 0.001		
Figure 9F	Gene	0.99	NA	NA
	Diet	< 0.001		

Supplemental Table 2

B

Supplemental Figure 1. **Distribution of IRS1 expression in various tissues.** (A and B) IB analysis (A) and quantification (B) of IRS1 expression levels in various tissues from *Apoe*^{-/-} and *Irs1/Apoe*^{-/-} mice. Data are represented as mean \pm SEM of at least three mouse replicates. *; p<0.05 and **; p<0.01 (Two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 2. Activation of Erk in EC and aorta from $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice. (A) IB analysis of p-Erk/tErk protein levels in EC after insulin stimulation. (B) IB analysis of p-Erk/tErk levels in the aorta from $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice fed on RD, WD and HFD. Data are represented as mean \pm SEM of at least cellular replicates or three mouse replicates. (Two-way ANOVA for multiple comparisons involving two factorial variables and two-tailed Student's t-test for pairwise comparisons).

L

Supplemental Figure 3. **Metabolic parameters assay in** *Apoe^{-/-}* **and** *Irs1/Apoe^{-/-}* **mice.** (A) BW, (B) fat compositio, (C) BP, (D and E) plasma cholesterol and triglyceride, and (F) plasma lipoprotein were measured in *Apoe^{-/-}* and *Irs1/Apoe^{-/-}* mice. All data are represented as mean \pm SEM of at least five mouse replicates. (Mixed effects model for repeated measurement and two-way ANOVA for multiple comparisons involving two/three factorial variables and two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 4. Analysis of atherogenic complexity of $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice with WD feeding. Representative examples of cross-sections from the aortic sinus stained with trichrome, α actin and MAC2 after feeding on WD for 12 wks. A higher magnification (4X) and scale bar: 100um.

Supplemental Figure 5. Analysis of the extent of atherosclerosis and its complexity of $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice fed on HFD. (A) NT production levels in aortas of $Apoe^{-/-}$ mice and $Irs1/Apoe^{-/-}$ mice fed on HFD for 12 wks (n = 6 per group). (B) *In situ* DHE staining of aortas from $Apoe^{-/-}$ mice and $Irs1/Apoe^{-/-}$ mice under the same condition as (A) higher magnification (10X) and scale bar: 10um. A higher magnification (25x) of the rectangle shows the VSMC (green) and DHE (red) area in the aorta. Scale bar: 10um (C) Fluorescent density analysis of DHE. Data are represented as mean \pm SEM of at least six mouse replicates. (One-way ANOVA for multiple comparisons involving one factorial variable and two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 6. Concentration-relaxation in the femoral arteries isolated from $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice. Concentration-response curves to (A) acetylcholine and relaxation-response curves to (B) sodium nitroprusside in femoral arteries from $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice. All data are represented as mean \pm SEM of at least five mouse replicates. *; p<0.05 and **; p<0.01 (Mixed effects model for repeated measurement; One-way ANOVA for multiple comparisons involving one factorial variable and two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 7. EDNRB is expressed in vascular endothelium from diabetic rodent model and diabetic patients. *EDNRB* genes (A) and mRNA significantly altered in Aorta of non-diabetic *Apoe^{-/-}* mice, compared to diabetic *Apoe^{-/-}* mice fed on HFD. (C) Representative staining of EDNRB (Green), nuclei (DAPI), and CD31 (Red) in human mammary artery. A higher magnification (40X) and scale bar: 10um. Data are represented as mean \pm SEM of at least three mouse replicates. **; p<0.01 (Two-tailed Student's t-test for pairwise comparisons).

Irs1/Apoe-/-Supplemental Figure 8. Induction of NO production in EC from mice through EDN1/EDNRB/Ca²⁺/CAMKII pathway. (A) Immunoblots of p-eNOS, p-Akt and EDNRB protein levels in EC pretreated with wortmannin. (B) Quantification of EDNRB expression level of (A). (C and D) Immunoblots and quantification of p-eNOS, p-CAMKII and EDNRB in EC from Irs1/Apoe^{-/-}mice transfected with scrambled (siScramble) or EDNRB siRNA (siEDNRB), and stimulated with insulin, and followed by EDN1 incubation. Data are represented as mean ± SEM of at least five cellular replicates for EDNRB expression experiments. **; p<0.01 (two-way/three-way ANOVA for multiple comparisons involving two/three factorial variables and two-tailed Student's t-test for pairwise comparisons).

B

Supplemental Figure 9. Enhanced NO production through endothelial EDN1/EDNRB activation. (A) EDN1-induced NO production was reduced in the treated EC with siRNA of EDNRB, compared that of siScramble RNA. A higher magnification (15X) and scale bar: 5um. NO production was visualized by DAF-2DA fluorescence intensity (FI) (A) and quantified in (B). Data are represented as mean \pm SEM of at least five cellular replicates. (Two-tailed Student's t-test for pairwise comparisons).

A

Supplemental Figure 10. Effect of mutated eNOS Ser to Ala at 1176 (AKI) on NO production via EDNRB pathway. (A) EC from $Apoe^{-/-}$ mice were infected with an adenovirus expressing GFP and IRS1 and followed by insulin stimulation. NO production was measured and quantified by DAF-2DA. (B) NO production was quantified in insulin-stimulated aortic EC from $Apoe^{-/-}$ mice treated with or without BQ-788. AU of DAF-2DA (FI). Data are represented as mean ± SEM of at least five cellular replicates, compared to Wt-AdGFP-Ins or AKI-AdGFP-Ins. *; p<0.05 and **; p<0.01 (Two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 11. Effect of mutated eNOS Ser to Ala at 1176 (AKI) on NO production in EC or Aorta from $Apoe^{-/-}$ and $Irs1/Apoe^{-/-}$ mice. (A) Immunoblot (Upper) and densitometry (Lower) of p-eNOS in insulin-stimulated aortic EC. (B and C) Representative example (B) of NO production visualized by DAF-2DA and quantified (C) in aorta from $Apoe^{-/-}$ (n=5) and $Irs1/Apoe^{-/-}$ (n=5) mice. AU of DAF-2DA (FI). A higher magnification (4X) and scale bar: 100um. Data are represented as mean \pm SEM of at least five cellular replicates or mouse replicates, compared to $Apoe^{-/-}$ + HFD. (Two-tailed Student's t-test for pairwise comparisons).

Supplemental Figure 12. Glucose tolerance, insulin resistance, and dyslipidemia in $Ldlr^{-/-}$, $Ednrb^{-/-}/Ldlr^{-/-}$, and $Irs1/Ednrb^{-/-}/Ldlr^{-/-}$ mice. (A) i.p.-GTT, (B) i.p.-ITT, and (C and D) plasma cholesterol and triglyceride in $Ldlr^{-/-}$, $Ednrb^{-/-}/Ldlr^{-/-}$, and $Irs1/Ednrb^{-/-}/Ldlr^{-/-}$ mice after feeding HFD for 12 wks. All data are represented as mean \pm SEM of at least five mouse replicates. (Mixed effects model for repeated measurement; two-way ANOVA for multiple comparisons involving two factorial variables and two-tailed Student's t-test for pairwise comparisons).