CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells

Tomomi Kotoku¹, Koji Kosaka², Miki Nishio³, Yasumasa Ishida³, Masashi Kawaichi² and Eishou Matsuda^{2,*}

Supplementary Supporting Information

Supplementary Methods Supplementary Figure Legends Supplementary Figures Supplementary tables Supplementary video legends

Supplementary Methods

siRNA and Transient Transfection

Mouse ESCs were transfected with 50-nM CIBZ-specific or scrambled negative control dicer substrate siRNA duplexes (Integrated DNA Technologies) as described previously¹⁸. Transfection with siRNA was performed using INTERFERin reagent (Polyplus Transfection) according to the manufacturer's instructions. Subsequently, siRNA-transfected cells were cultured for 3 days and were then cultured under rotary suspension conditions for an additional 2 days.

Chromatin Immunoprecipitation (ChIP) Assays

ChIP assays were performed as described previously¹⁷. Amplification of immunoprecipitated DNA was achieved using Blend Tag plus DNA polymerase (Toyobo), after annealing primers (Table S3) for promoter regions (prom) and distal regions (dist) at 55°C. All experiments were repeated three times.

Supplementary Figure Legends

S1. Expression of Nanog, Oct3/4, and Sox2 in WT and CIBZ^{-/-} ESCs during ESC differentiation; mRNA levels of the indicated genes were determined using semi-quantitative PCR with GAPDH as a loading control.

S2. Knockdown of CIBZ in ESCs upregulates T and Mesp1 during ESC differentiation; siRNA duplexes were used to reduce CIBZ expression in ESCs. Three days after transfection with 50-nM CIBZ siRNA or 50-nM scrambled negative siRNA (control), ESCs were cultured under rotary suspension conditions for an additional 2 days (day 5), and expression of the indicated genes was determined using semi-quantitative qPCR with GAPDH as a loading control.

S3. CIBZ overexpression in ESCs suppresses cardiac genes during ESC differentiation; mRNA levels of the indicated genes were determined using semi-quantitative qPCR with GAPDH as a loading control.

S4. CIBZ binds to the Mesp1 promoter region but fails to bind to promoter regions of Flk1, Nkx2.5, and Gata4 genes in ESCs; ChIP assays were performed using an anti-CIBZ antibody in undifferentiated ESCs. Non-specific IgG was used as a negative control. Input DNA (1%), IgG-precipitated DNA, and CIBZ-immunoprecipitated DNA were amplified using primers for the indicated promoter regions.

S5. Western blotting analysis of Nanog, Oct3/4, and Sox2 expression during ESC differentiation; Expression levels of the indicated proteins in WT and CIBZ^{-/-} ESCs (a), and in pEF1 α (control) and pEF1 α -CIBZ (CIBZ OE) transfected ESCs (b); α -tubulin was used as a loading control.

S6. Treatment of ESCs with 5-aza-dC failed to abolish binding of CIBZ to T and Mesp1 promoter regions:

(a), Effects of 5-aza-dC treatment on ESCs; ESCs were treated with 5-aza-dC (0.25 μ M or 0.5 μ M) for 24 hours and expression of indicated genes and proteins was determined using semiquantitative PCR (left panel) and Western blotting (right panel) with β -actin and α -tubulin as loading controls, respectively; (b), Schematic representation of 5' regions of T and Mesp1 promoters (BLAT search genome, UCSC Genome Bioinformatics); Dist, distal; Prom, promoter; (c), ChIP assays were performed using an anti-CIBZ antibody in untreated (upper panel) and 5aza-dC (0.25 μ M) treated ESCs (lower panel). Input DNA (2.5%), IgG-precipitated DNA, and CIBZ-immunoprecipitated DNA were amplified using indicated primers for T (left panel) and Mesp1 (right panel). S7. MG132 treatments of ESCs failed to rescue CIBZ protein expression. ESCs (denoted as EB d0) were trypsinized, were treated with MG132 (2 and 5 μ M) or DMSO or vehicle ("-"), and were then cultured in ES medium on non-adherent Petri dishes on an orbital shaker for 2 days. Expression of indicated proteins was determined using Western blotting with α -tubulin as a loading control.

b

а

С

Gene	Primer sequence (5'to 3')	Product size
Oct3/4	F: TCACTCACATCGCCAATCAG	205 ha
	R: CCTGTAGCCTCATACTCTTCTC	305 бр
Sox2	F: CTACAGCATGTCCTACTCGC	2511
	R: CCTCCCAATTCCCTTGTATCTC	351 bp
Nanog	F: TTCAGAAATCCCTTCCCTCG	162 h
	R: AGTAGCAGACCCTTGTAAGC	162 bp
Sox1	F: ATACCGCAATCCCCTCTCAG	167 h
	R: ACAACATCCGACTCCTCTTCC	167 bp
	F: CTGGAAGTGGCTACATACAGGAC	2101
Nestin	R:AGTCTCAAGGGTATTAGGCAAGG	210 bp
T	F: GAAGTGAAGGTGGCTGTTGG	2001
T	R: ATTTACCTTCAGCACCGGGA	298 bp
DU 1	F: TCGAGCCCTCATGTCTGAAC	2171
Flk1	R: CACTGAGCGATTTCTCCTCAAC	317 bp
	F: GTCTGCAGCGGGGGTGTCGTG	100.1
Mesp1	R: CGGCGGCGTCCAGGTTTCTA	189 bp
<i>a</i> . <i>c</i>	F: GGGAGAAACTGTGACAATGAC	1661
Gata 6	R:ACGAACGCTTGTGAAATGTG	166 bp
G 17	F: CGAGCCAAAGCGGAGTCTC	1561
Sox17	R: TGCCAAGGTCAACGCCTTC	156 bp
<i>a</i>	F: GTGAGCCTGTATGTAATGCC	0741
Gata 4	R: CTGTGCCCATAGTGAGATGAC	274 bp
MEF2C	F: GAGATGCCAGTTACCATCCC	2001
	R: CTTGTTCAGGTTACCAGGTGAG	280 bp
NU 2.5	F: CCAAGTGCTCTCCTGCTTTCC	140.1
Nkx2.5	R: GCCATCCGTCTCGGCTTT	149 бр
	F: AGGAGCACAGCCAAATTTACCAC	20.4.1
Tbx5	R: ATGAGCGGAGAAGTGCTGGTAG	294 bp
Isl1	F: ATGATGGTGGTTTACAGGCTAA	1741
	R: TCGATGCTACTTCACTGCCAG	174 bp
cTnI	F: TGCCAACTACCGAGCCTATG	1741
	R: TGGCAACGAGTCCTCAGAAC	1/4 bp
GAPDH	F: CCATCACCATCTTCCAGGAG	
	R: CCTGCTTCACCACCTTCTTG	577 bp

 Table S1. Primer sequences for semi-quantitative RT-PCR

Gene	Primer sequence (5' to 3')	Product	
		size	
Т	F: GCTTCAAGGAGCTAACTAACGAG	117 bp	
	R: CCAGCAAGAAAGAGTACATGGC	117.00	
Flk1	F: CTGGAGCCTACAAGTGCTCG	170 hn	
	R: GAGGTTTGAAATCGACCCTCG	179 op	
Mesp1	F: GTCTGCAGCGGGGTGTCGTG	190 hr	
	R: CGGCGGCGTCCAGGTTTCTA	189 op	
Nkx2.5	F: GGTCTCAATGCCTATGGCTAC	152 hr	
	R: GCCAAAGTTCACGAAGTTGCT	155 op	
Gata4	F: AACGGAAGCCCAAGAACCTG	107 hr	
	R: AGTGGCATTGCTGGAGTTACC	107 бр	
Tbx5	F: AATGGTCCGTAACTGGCAAAG	150 hr	
	R: GGATAATGTGTCCAAACGGGTC	139 op	
1-11	F: ATGATGGTGGTTTACAGGCTAAC	171 hr	
Isl1	R: TCGATGCTACTTCACTGCCAG	174 bp	
Mef2C	F: AGGATAATGGATGAGCGTAACAG	240 hr	
	R: GTTCAATGCCTCCACAATGTC	240 bp	
	F: TGCCAACTACCGAGCCTATG	174 1	
cTnl	R: TGGCAACGAGTCCTCAGAAC	174 op	
МНС	F: CAGAGGAGAAGGCTGGTGTC	101 hr	
	R: TTGTCAGCATCTTCTGTGCC	121 op	
GAPDH	F: CAATGTGTCCGTCGTGGATCT	124 hr	
	R: GTCCTCAGTGTAGCCCAAGATG	124 op	

Table S2. Primer sequences for qPCR

Table S3. Primers for ChIP assay

	Primer sequence (5' to 3')
Т	F: GCTGCTCGGTACTTCAAAGGG
(Promoter region)	R: GCGCGACAAGAGTAAGTCTCTG
Т	F: TCCTGCTCTTTGTCACCTTC
(Distal region)	R: GATTGTTGGAACGCATGCTG
Mesp1	F: GTGGAGCAGACTGGACTAAG
(Promoter region)	R: TTATCCTGAGCCCTAGGTGTG
Mesp1	F: ACTCTAGCTGCCTGTCTTGG
(Distal region)	R: CCTTACTTCACATACCAGAGCCTT
Flk1	F: GACTTTCAGTGCAGCGGCGAAG
(Promoter region)	R: CAAATCTGGACGCAGCTCGGTTTC
Gata4	F: CGTAGATCTGAGGCTAGCAAGGC
(Promoter region)	R: CTCTTTCCTCCCTACTCTCAGTGGTC
Nkx2.5	F: CTGGCTGGGATTTTCAGGCTAACGAG
(Promoter region)	R: ACGGGCAGTTCTGCGTCACCTAAT

	Primer sequence (5' to 3')
Т	F: AGACGACGCGTCAAAGTCGCAGGCGCCGGTGTG
	R: GTCCCAAGCTTCCACCTCTCCACCTTCCAG
Mesp1	F: AGACGACGCGTCAAGGCTCTGGTATGTGAAGTAAGG
	R: GTCCCAAGCTTGGCAGCGGAGGCCTGACCATTG

Table S4. Primers for pGL3-T and pGL-3-Mesp1 constructs

Г

Supplementary video legends

Supplementary video 1. Representative video documenting the spontaneous beating of WT EBs at day 10 of ESC differentiation.

Supplementary video 2. Representative video documenting the spontaneous beating of CIBZ^{-/-} EBs at day 10 of ESC differentiation.