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Supplementary Figure 1. Dendritic disinhibition powerfully gates dendritic nonlinearity.

(a-d) Dendritic disinhibition controls NMDAR-dependent nonlinearity in a reconstructed compartmental

neuron model. (a) A morphologically reconstructed compartmental model of a layer 2/3 pyramidal

neuron (1) receives excitatory and inhibitory inputs uniformly distributed onto one basal dendrite. (b)

Excitatory inputs can generate a local, regenerative NMDA plateau potential in the dendrite. As the

number of activated synapses is increased, there is a sharp nonlinear increase in the evoked dendritic

membrane depolarization (VD). (c-d) Presynaptic spike times are modeled as Poisson-distributed events.

(c) In response to synaptic input mediated by NMDAR channels, the mean dendritic voltage across

time (V D) increases nonlinearly as a function of excitatory rate (light blue). Moderate inhibition largely

suppresses NMDA plateau potentials even for high excitatory input rate (dark blue). (d) The effect of

inhibition is much weaker when excitatory input is mediated by AMPARs. 20 excitatory synapses are

used as input in (c,d). (e-h) A reduced compartmental neuron model captures the nonlinearity of the

morphologically reconstructed model. (e) A somatic compartment is connected to multiple, otherwise

independent, dendritic compartments (only three shown). (f-g) Modeling results in the reconstructed

neuron model (b-d) are reproduced by the simplified model. 15 excitatory synapses are used as input in

(g,h).
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Supplementary Figure 2. Effects of NMDA receptor saturation and low-rate inhibition. (a-d) NMDAR

saturation allows for much stronger inhibitory control. (a) Using an NMDAR model with saturation

allows mild dendritic inhibition to powerfully control dendritic voltage. Note that voltage of the inhibited

dendrite (dark blue) never reaches the same level as the disinhibited dendrite (light blue). (b) The same

level of inhibition has a much smaller effect when we used a non-saturating NMDAR model. (c) For

constant synaptic conductance, the steady-state voltage of one dendritic branch (Vss) increases sharply

with the effective input gNMDA/(gL + gGABA), where gNMDA, gL, and gGABA are the NMDAR, leak, and

GABAR conductances, respectively. The dashed line indicates the threshold θNMDA below which Vss is

stably in the low state. (d) The NMDR conductance, and therefore gNMDA/(gL+gGABA), saturates at high

input rates to NMDAR synapses. With moderate inhibition, the saturated value of the effective input

can be lower than the threshold θNMDA for an NMDA plateau potential. (e-h) Low-rate (temporally

sparse) Poisson inhibition generates irregular NMDA plateau potentials and graded encoding of input

rate. Inhibition is said to be temporally sparse when the product of the inhibition rate r I and the time

constant τGABA of GABAR is much smaller than 1, i.e. r I ·τGABA ≪ 1 (e) Due to relatively high input

rate and long time constant, the NMDAR gating variable averaged across synapses is nearly constant in

time. Each trace corresponds to a different excitatory input rate, ranging from 30Hz (bottom) to 50Hz

(top); the same applies to (f,g). (f) Inhibitory conductance is temporally sparse due to a low background

inhibition rate of 5 Hz. (g) The dendritic voltage switches stochastically in time, into and out of the

NMDA plateau potential. (h) The dendritic voltage across time exhibits a bimodal distribution, due to

stochastic switching. The excitatory rate is set to 40 Hz (asterisk in (g)).
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Supplementary Figure 3. Pathway-specific gating with varying levels of AMPAR and GABAB con-

ductance. In the majority of our work, dendritic excitation is mediated only by NMDARs and dendritic

inhibition only by GABABRs. Here we show how pathway-specific gating varies with the inclusion of

AMPAR and GABAB inputs. (a) Pathway-specific gating when excitatory input is mediated solely by

NMDARs, adapted from Fig. 2g for comparison. (b) When the excitatory input is conducted solely by

AMPARs (maximum conductance g̃AMPA =2.5 nS for each synapse), the gating performance is strongly

degraded. All other conditions are kept the same in (a) and (b). Disinhibited dendrites receive 30-Hz

disinhibition. (c) Gating selectivity (which ranges from 0 for no gating to 1 for perfect gating, see Ex-

perimental Procedures for the definition) decreases as a function of the AMPA conductance ratio. Here

AMPA conductance ratio is defined as g̃AMPA/(g̃AMPA + g̃NMDA), which is 0 in the NMDAR-only case and

1 in the AMPAR-only case. g̃AMPA + g̃NMDA is held constant at 2.5 nS. (d) Gating selectivity increases

as a function of the GABAB conductance ratio. This is due to both the slower dynamics of GABAB

receptors and the inward-rectifying potassium (KIR) conductance activated by GABAB receptors (2; 3).

Here excitatory inputs are mediated by NMDARs only. (e) Gating selectivity remains high for a wide

range of combinations of AMPA and GABAB conductance ratio.
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Supplementary Figure 4. Multi-compartment rate model for pyramidal neurons based on the reduced

spiking neuron model. (a) The neuron model is comprised of multiple dendrite compartments, whose

mean voltages are modeled with a family of sigmoidal functions. These dendritic voltages are converted

into currents and fed into a somatic compartment, whose firing rate output is modeled with a power-law

function. (b) The mean dendritic voltage (V D) as a function of excitatory and inhibitory inputs. (Blue)

Simulation of the reduced-compartmental spiking neuron model. 15 NMDAR inputs fire at a Poisson rate

of 30 Hz with conductance ranging from 0.25 to 5.0 nS, resulting in total conductance (g E ) approximately

between 0 and 50 nS. Each curve corresponds to a different inhibitory input rate, ranging uniformly from

0 Hz (top curve) to 100 Hz (bottom curve), in increment of 10 Hz. (Black) Fit of the simulation results.

All curves are simultaneously fit with a family of sigmoidal functions, where parameters of the sigmoid,

i.e. mid-point and width, are controlled by inhibition. The back-propagating action potential is fixed at

a rate of 10 Hz. (c) Somatic firing rate as a function of input current from dendrites (and potentially

PV neurons). In our model, since at resting state the mean dendritic voltage is lower than the somatic

voltage, the input current is negative. The simulation result of the spiking model (Blue) is fit with a

power-law function (Black).
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Supplementary Figure 5. Mechanism of control. (a) In this scenario, we assume that for each pathway

control inputs target a random subset of VIP and SOM neurons. (b-c) Input currents onto SOM neurons

(only 20 shown). (b) 50% of the SOM neurons receive excitatory currents from control (red). 50% of VIP

neurons receive excitatory control, but due to the high random connectivity from VIP to SOM neurons,

inhibitory currents onto SOM cells are nearly uniform (blue). (c) The sum of the excitatory and inhibitory

currents onto SOM neurons, i.e. the total currents, are primarily inhibitory and vary strongly across SOM

neurons. The overall inhibitory currents are results of overall stronger inhibition. The variability across

SOM neurons are mainly inherited from the selective excitatory control input.
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Supplementary Figure 6. Inclusion of PV neurons results in a uniform somatic inhibition across pyra-

midal neurons. (a) SOM suppression lead to PV disinhibition and somatic inhibition. Same as Fig. 6a.

(b) The change in the SOM-to-PV input currents after the control input. The change in currents is

disinhibitory (net excitatory) with a small standard deviation compared to the mean across PV neurons.

Notice that although the control input results in a selective suppression of SOM neurons (Supplementary

Figure 5c), the change in the SOM-to-PV currents is almost uniform due to the high SOM-to-PV con-

nection probability. (c) The change in the PV-to-soma input currents after the control input is net

inhibitory and again uniform across somas. Therefore a selective suppression of SOM neurons results in

a non-selective inhibition across somas through PV neurons.
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Supplementary Figure 7. Fit and prediction of the plasticity model compared to experimental data.

(a-c) A pre-synaptic spike is paired with multiple post-synaptic action potentials (AP). Light symbols

mark data showing synaptic weight change (weight after learning/weight before learning) when varying

the pre-post time lag (a), post-synaptic AP frequency (b), and number of post-synaptic spikes (c). In

(b,c), the presynaptic spike either precedes (blue) or follows (red) the postsynaptic spikes. Curves in

(a-b) show the model fit, with the same set of parameters. (c) The model generalizes to predict data

not used to fit the model. Experimental data are extracted from (4).
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Supplementary Figure 8. Fits of behavioral data as we vary parameters of the interneuronal circuit.

(a) The model fit to behavioral data in motion context when we set NSOM→dend = 20. The fit is much

degraded compared to Fig. 8. From Fig. 4 we know that NSOM→dend is the critical parameter for gating

selectivity measured on the neural level. (b) The sum of squared errors of the model fit as a function

of NSOM→dend. For a large range of NSOM→dend, the model can nearly fit the data optimally. The fit

starts to degrade when NSOM→dend > 10. Dashed line indicates the error level of the optimal sigmoidal fit,

where data are directly fitted to logistic functions. The sum of squared errors shown here is the median

error of 50 different model realizations and fits.
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Supplementary Tables
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Parameter Value References Layer Area Animal

Proportion of SOM neurons among

inhibitory neurons

0.208 (5) L2/3 S1 mouse

Proportion of VIP neurons among in-

hibitory neurons

0.2 (5) L2/3 S1 mouse

Total number of inhibitory neurons in

a column

676±116 (6) L2/3 S1 rat

Baseline activity of SOM neurons 6.2±0.7 Hz (7) L2/3 S1 mouse

Unitary IPSQ from SOM to pyramidal

neurons

1.5±0.3 pC (8) L2/3 V1 mouse

Unitary IPSQ from VIP to SOM neu-

rons

0.69±0.33 pC (8) L2/3 V1 mouse

Connection probability from SOM to

pyramidal neurons (within 200µm)

0.71±0.03 (9) L2/3 frontal

cortex

mouse

Connection probability from VIP to

SOM neurons (within 25−100µm)

0.625±0.12 (8) L2/3 V1 mouse

Number of basal dendrites on each

pyramidal cell (number of total tips)

28.8±2.4 (10) L2/3 V1 rat

Number of basal dendrites on each

pyramidal cell (maximum branches at

fixed radius)

20±2.6 (11) L3 V1 monkey

Number of basal dendrites on each

pyramidal cell (maximum branches at

fixed radius)

34.2±4.9 (11) L3 anterior

cingulate

cortex

monkey

Supplementary Table 1. Raw experimental data used to constrain the VIP-SOM-pyramidal disinhibitory

circuit. The error estimates are also taken from the references when available. Some of the data are

extracted from their figures since the value is not reported in texts. Specifically, the proportion of VIP

neurons is inferred from the proportion of 5HT3a neurons among interneurons and proportion of VIP

neurons among 5HT3a neurons.
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Model Figure

Fully-reconstructed spiking pyramidal neuron

model

Supplementary Figure 1a-d

Reduced multi-compartmental spiking pyramidal

neuron model

Fig. 2,7, Supplementary Figure 1e-h,2,3

Multi-compartmental rate pyramidal neuron

model

Fig. 3-6,8, Supplementary Figure 4-6,8

Rate SOM neurons Fig. 4-6,8, Supplementary Figure 5,6,8

Rate VIP neurons Fig. 5,6,8, Supplementary Figure 5,6,8

Rate PV neurons Fig. 6, Supplementary Figure 6

Calcium-based synaptic plasticity Fig. 7, Supplementary Figure 7

Supplementary Table 2. All types of models used, and their corresponding result figures.
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Supplementary Notes

1. Gating selectivity critically depends on NSOM→dend

The gating selectivity is defined as the mean gating selectivity across neurons,

Gating selectivity = Eneuron

[
ron − roff

ron + roff

]
(1)

For each neuron, the neural activity given the gated-on pathway is

r̃on = fr (〈V D,on〉) (2)

, where 〈V D,on〉 is the mean dendritic voltage across all the dendrites on that neuron for the

gated-on pathway. Notice here for simplicity we used an input-output formulation for the so-

matic compartment that is slightly different from the one used in the main text (the results are

the same)

r = fr (〈V D〉) = r0 +
(
〈V D〉−EL

Vr

)nr

(3)

After correcting for the baseline, we have

ron = fr (〈V D,on〉)− fr (EL) (4)

=
(
〈V D,on〉−EL

Vr

)nr

(5)

Similarly

roff =
(
〈V D,off〉−EL

Vr

)nr

(6)

So

roff/ron =
[

(〈V D,off〉−EL)/(〈V D,off〉−EL)
]nr

(7)

In the limit of large number of dendrites on each pyramidal neuron, we can replace the av-

eraged dendritic voltage with its expectation over dendrites ED[·].

〈V D,on〉 ≈ ED

[
V D,on

]
(8)

Under this approximation, ron and roff would be the same for every neuron, therefore we

have
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Gating selectivity = ron − roff

ron + roff
(9)

= −1+2/
(
1+

[
(ED[V D,off]−EL)/(ED[V D,on]−EL)

]nr
)

(10)

(11)

Since dendritic voltage is determined by the total excitatory and inhibitory conductance re-

ceived,

V D = fV (g E , g I ) (12)

= 30 ·
[

1+ tanh

(
g E − g1/2

β

)]
+V0 +EL (13)

= 30 ·
[

1+ tanh

(
g E −bg ·

(
gL,D + g I

)
k ·exp

(
g I /γ

) )]
+V0 +EL (14)

(15)

Remember that for each pathway, we assume that the excitatory input conductance is a

deterministic function of the inhibitory conductance received when the corresponding gate is

open.

g E =


(1− g I /g I ,th) · gE ,max , g I < g I ,th

0 , g I ≥ g I ,th

(16)

Denote this rectified linear function as g E = fE (g I ). For convenience consider two pathways, the

inhibitory conductance for gate 1 is g I ,1 and for gate 2 is g I ,2. And excitatory conductance for

pathway 1 and 2 are g E ,1 = fE (g I ,1) and g E ,2 = fE (g I ,2) respectively. Then

ED

[
V D,on

]
= 30 ·

[
1+ED

[
tanh

(
fE (g I ,1)−bg ·

(
gL,D + g I ,1

)
k ·exp

(
g I ,1/γ

) )]]
+V0 +EL (17)

(18)

and

ED

[
V D,off

]
= 30 ·

[
1+ED

[
tanh

(
fE (g I ,2)−bg ·

(
gL,D + g I ,1

)
k ·exp

(
g I ,1/γ

) )]]
+V0 +EL (19)

(20)
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We assumed that each dendrite is targeted strictly by NSOM→dend SOM neurons, and since we

are keeping the total amount of inhibition GSOM→dend received by each dendrite fixed, the time-

averaged conductance of each connection is GSOM→dend/NSOM→dend. We also assumed that each

SOM neuron gets suppressed with probability 1−p. Then the number of non-suppressed SOM

neurons targeting each dendrite nSOM→dend follows a binomial distribution

nSOM→dend ∼ B(NSOM→dend, p) (21)

And

g I ,1 =GSOM→dend/NSOM→dend ·nSOM→dend (22)

Therefore NSOM→dend determines the distribution for g I ,1, g I ,2, g E ,1, g E ,2, ED

[
V D,on

]
,ED

[
V D,off

]
,

and finally the gating selectivity. In summary, in the limit of a large number of dendrites, we have

shown that gating selectivity only depends on the parameter NSOM→dend.

2. Gating selectivity strictly improves with somatic inhibition

Denote the f-I response function of the somatic compartment as f (·), and assume the dendritic

input current to the soma is Ion and Ioff when the gate is open or closed respectively. Also denote

the somatic inhibitory current as IPV. For convenience, assume IPV > 0, so the outputs of the

pyramidal neuron are

ron = f (Ion − IPV) (23)

roff = f (Ioff − IPV) (24)

respectively. We consider only the case when ron,roff > 0, which means input stimuli have a net

excitatory effect. Also we have IPV < Ioff. Since ron,roff are baseline corrected, we should have

f (0) = 0. Here we derive the necessary and sufficient condition for gating selectivity

S = ron − roff

ron + roff
(25)

to strictly increase with IPV.

We have
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∂S
∂IPV

(26)

= ∂
∂IPV

[ ron−roff
ron+roff

] (27)

= 1
(ron+roff)2 · [(ron + roff)

∂
∂IPV

(ron − roff)− (ron − roff)
∂

∂IPV
(ron + roff)] (28)

= 2
(ron+roff)2 · [roff

∂ron
∂IPV

− ron
∂roff
∂IPV

] (29)

So

∂S

∂IPV
< 0 (30)

is equivalent to

roff
∂ron

∂IPV
< ron

∂roff

∂IPV
(31)

In a few more steps, we can easily derive that the necessary and sufficient condition for gating

selectivity to improve with somatic inhibition is that

( f ′(I ))2 − f (I ) · f ′′(I ) > 0 ,∀I > 0 (32)

where f ′(I ) = d f (I )
dI .

We can easily see that for any power law function f (I ) = aI b ,

( f ′(I ))2 − f (I ) · f ′′(I ) = (abI b−1)2 −aI b ab(b −1)I b−2 (33)

= a2bI 2b−2 (34)

is strictly larger than 0, as long as b > 0.
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