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SUMMARY
Identification of cell-fate determinants for directing stem cell differentiation remains a challenge. Moreover, little is known about how

cell-fate determinants are regulated in functionally important subnetworks in large gene-regulatory networks (i.e., GRNmotifs). Here we

propose amodel of stem cell differentiation inwhich cell-fate determinants work synergistically to determine different cellular identities,

and reside in a class of GRNmotifs known as feedback loops. Based on this model, we develop a computational method that can system-

atically predict cell-fate determinants and their GRN motifs. The method was able to recapitulate experimentally validated cell-fate de-

terminants, and validation of two predicted cell-fate determinants confirmed that overexpression of ESR1 and RUNX2 in mouse neural

stem cells induces neuronal and astrocyte differentiation, respectively. Thus, the presented GRN-basedmodel of stem cell differentiation

and computational method can guide differentiation experiments in stem cell research and regenerative medicine.
INTRODUCTION

Cellular phenotypes are characterized by stable gene-

expression states determined by underlying gene-regula-

tory networks (GRNs), particularly by subnetworks that

appear frequently and are functionally important (i.e.,

GRNmotifs). A classical GRNmotif, the toggle switch, con-

stitutes a molecular mechanism that determines cell-fate

decisions, and provides stability to transcriptional pro-

grams of binary cell-fate choices. Overexpression of each

transcription factor (TF) corresponds to one of the two

mutually exclusive cell fates, whereas a ‘‘balanced’’ expres-

sion of both TFs maintains the stem/progenitor state

(Huang et al., 2007; Jacob and Monod, 1961; Roeder and

Glauche, 2006). The toggle switch has been experimentally

shown to play an important role in binary cell-fate control

of stem/progenitor cells (Graf, 2002; Lin et al., 2008; Ral-

ston and Rossant, 2005). A well-known example is the

one consisting of an erythroid determinant Gata1 (Pevny

et al., 1991) and a myeloid determinant Spi1 (Voso et al.,

1994) in the hematopoietic stem cell (HSC) system.

Interestingly, a different GRN motif has been more

recently proposed for explainingmesendodermal and ecto-

dermal specification of mouse embryonic stem cells

(mESCs) (Shu et al., 2013). In this motif, the balanced

expression (i.e., similar expression levels) of a mesendoder-

mal and an ectodermal cell-fate determinant, POU5F1

(Niwa et al., 2000; Zeineddine et al., 2006) and SOX2

(Kopp et al., 2008), respectively, maintains the pluripotent

state, whereas significant up- or downregulation of either

of these genes induces differentiation into the respective

lineage. Moreover, replacing POU5F1 with other mesendo-
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dermal determinants was able to induce reprogramming of

fibroblasts to pluripotency in both mouse and human

(Montserrat et al., 2013; Shu et al., 2013). These observa-

tions suggest that stem/progenitor cell states in general

seem to be maintained by a balance between differentia-

tion forces exerted by groups of opposing cell-fate determi-

nants, and that the underlying GRN motifs do not neces-

sarily comprise toggle switches. Indeed, a toggle switch

belongs to a more general class of network motifs, known

as feedback loops (Thomas, 1978; Siebert, 2009; Zañudo

and Albert, 2013).

Taking these facts together, here we propose a computa-

tional model that generalizes binary-fate stem cell differen-

tiation events (Figure 1), according to which stem/pro-

genitor cells correspond to stable gene-expression states

maintained by the balanced expression of cell-fate determi-

nants residing in clusters of interconnected feedback loops

(strongly connected components). Furthermore, these

strongly connected components consist of differentially

expressed TFs between two daughter cell types from the

stem/progenitor cells, and stabilize the two stable gene-

expression states corresponding to these two daughter

cell types. Upregulated TFs in one of the daughter cells

cooperate among themselves and compete with those up-

regulated in the other daughter cell.

Based on this model, we further propose a Boolean

network-based computational method that can systemati-

cally predict cell-fate determinants and the GRN motifs to

which these genes belong. This method is general, since

it can be applied to any stem cell differentiation system

for which gene-expression data of the stem/progenitor

and the two daughter cells are available. We selected five
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Figure 1. Proposed Model of Binary-Fate Stem Cell Differenti-
ation Governed by GRN Motifs
In this model two different daughter cell types (daughter 1 and
daughter 2) from a common stem/progenitor cell correspond to two
stable steady states, which are stabilized by strongly connected
components of any number of genes consisting of differentially
expressed TFs between two daughter cells. The same strongly
connected components are used for maintaining the stem/pro-
genitor state, in which pair(s) of TFs exhibit a more balanced
expression pattern in comparison with that in two daughter cells
(indicated by asterisks). TFs that do not show this balanced
expression pattern are still necessary for stabilizing the expression
balance of TFs marked with asterisks. The classical toggle switch
that consists of two TFs (n = 2) is the simplest case of this model.
Red nodes are TFs upregulated in daughter 1. Blue nodes are TFs
upregulated in daughter 2. Purple nodes indicate TF expression in
the stem/progenitor cell. Pointed arrows indicate activation and
blunted arrows indicate inhibition. Note that motifs shown in this
figure are examples of each n. Motifs with different topologies (not
shown) are possible.
stem cell systems to assess the validity of the method:

mESCs, mHSCs, mouse neural stem cells (mNSCs), mouse

mesenchymal stem cells (mMSCs), and hESCs differenti-

ating intoMESP1+ or MESP1� (pre-)cardiac progenitor cells

(hCPCs) (den Hartogh et al., 2015). Our predictions were

able to recapitulate experimentally validated cell-fate deter-

minants in these systems. In particular, the method pre-

dicted known cell-fate determinants in the hCPC system,

where the differentiation is incomplete and phenotypic

differences between the two daughter cells are relatively

small. Finally, we experimentally validated predicted cell-

fate determinants in the mNSC system, which confirmed

that ESR1 and RUNX2 induce neuronal and astrocyte dif-

ferentiation, respectively.

Thus, this study presents a general GRN-based computa-

tional model that can identify GRN motifs crucial for both

maintenance and differentiation of stem/progenitor cells.

From a systems biology point of view, identification of

functionally important subnetworks is important for ex-

tracting biologically meaningful information from a large

GRN. Finally, the method solely requires transcriptome

data and literature knowledge of TF interactions, while

not requiring prior knowledge of potential candidate

genes; neither are pathways or gene ontology necessary.
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Therefore, our approach offers practical guidance to exper-

iments in stem cell biology and regenerative medicine.
RESULTS

The Method Recapitulates Known Toggle Switches

The overview of our computational method is shown

in Figures 2 and S4. In brief, a Boolean GRN among

differentially expressed TFs between two daughter cell

types is reconstructed using database knowledge and our

network-pruning algorithm. In parallel, pairs of TFs whose

expression patterns are significantly disrupted upon differ-

entiation in comparison with the stem/progenitor cell are

identified. In each of these significant TF pairs, if the two

TFs are directly connected to each other in their respective

most frequent strongly connected component, they are

considered candidate cell-fate determinants (see Experi-

mental Procedures for details). Application of this method

was able to recapitulate the well-characterized toggle

switches for the Gata1-Spi1 pair (Graf, 2002) and the

Runx2-Pparg pair (Lin et al., 2008) in the mHSC and

mMSC systems, respectively (Figures 3B and 3E). Note

that the statistical metric we devised in this study, the

normalized ratio difference (NRD), was intended to iden-

tify pairs of TFs whose expression ratios showed a signifi-

cant change in daughter cells in comparison with the

stem/progenitor cells. We suggest that the NRD is biologi-

cally more relevant than the absolute ratio within each

cell type, since the basal/effective level of expression differs

among different TFs. Indeed, the expression values of the

two TFs in well-known pairs, such as Gata1-Spi1 and

Runx2-Pparg, were very different in the progenitor cells

(Table 1). The TF pairs with significant NRD (significant

NRD TF pairs) in each system are listed in Table S1.
The Predicted GRN Motif Explains Previous

Experimental Evidence in mESCs

It has been shown that induced pluripotent stem cells

(iPSCs) could be derived by expressing KLF4 and POU5F1

in SOX2-expressing mouse neural progenitor cells (Blel-

loch et al., 2006), or in mouse embryonic fibroblasts in

combination with small compounds that can substitute

SOX2 (Shi et al., 2008). These previous observations sug-

gest that KLF4 acts similarly to POU5F1 and antagonisti-

cally to SOX2. In addition, PAX6 is a known ectoderm

determinant in human (Zhang et al., 2010). Therefore,

the mESC GRN motif predicted for the Pou5f1-Sox2 pair

in this study (consisting of Pou5f1, Sox2, Klf4, and Pax6)

(Figure 3A and Table 1) can mechanistically explain these

previous experimental observations. In addition, thismotif

resembles the one previously proposed (Shu et al., 2013),

which consisted of two nodes representing Pou5f1 and



component

Figure 2. Schematic View of Proposed
Method
Differentially expressed genes are computed
between two daughter cells and Boolean
GRNs are reconstructed from differentially
expressed TFs by first retrieving literature-
based interactions and then pruning this
network by removing interactions incom-
patible with Booleanized gene-expression
data of two daughter cells. In parallel,
statistically significant NRD TF pairs are
computed. Finally, for each significant
NRD TF pair, the most frequent strongly
connected component is identified among
the best GRN solutions. If two paired TFs are
directly connected to each other in that
strongly connected component, they are
considered predicted opposing cell-fate
determinants together with their GRN motif.
Sox2 and two hyper-nodes (i.e., collections of unknown

genes) representing the ectoderm and mesoderm, further

supporting our proposed general differentiation model.

Importantly, our method does not use hyper-nodes, so it

can explicitly describe key interactions among cell-fate

determinants that collectively maintain different cellular

identities.

The Method Predicted Known Lineage Specifiers Even

when Differentiation Is Incomplete

Themethodwas also applied to the dataset of CPC differen-

tiation, in which hESCs were differentiated into MESP1+

and MESP1� (pre-)CPCs (den Hartogh et al., 2015), where

only the former was able to differentiate further into cardi-

omyocytes. Our predictions of cell-fate determinants for

theMESP1+ lineage includedGATA4, a well-known inducer

of cardiac differentiation (Kuo et al., 1997) (Figure 3F),

andMYC, which has recently been shown to play a critical

role in long-term expansion of CPCs (Birket et al., 2015)

(Table 1). Hence, our method was able to predict important
cardiac cell-fate determinants even when the differentia-

tion is not terminal and the two daughter cell types are

close to each other. This aspect of themethod can be useful

when differentiation into a not well-defined particular sub-

type of a cell lineage is desired.

Deterministic Continuous Simulation Reproduces

Expected Differentiation Dynamics upon

Perturbations

An advantage of our method is that it is solely based on a

simple Boolean network model for its predictions. How-

ever, because the Boolean model might oversimplify the

quantitative nature of real biology, such as the inability

to represent an intermediate steady state for stem/progen-

itor cells, we next investigated whether predicted GRN

motifs could capture expected cell-fate decisions in a

more realistic continuous model (see Supplemental Exper-

imental Procedures for details). ThemHSC systemwas used

for this purpose, as it is the most well studied both experi-

mentally and theoretically. The result indicates that our
Stem Cell Reports j Vol. 7 j 307–315 j September 13, 2016 309
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Figure 3. Predicted Opposing Cell-Fate Determinant Pairs, Their GRN Motifs, and Their Experimental Validation in mNSCs
(A–F) Red nodes are TFs upregulated in daughter 1 (mesoderm, erythroid, neuron, osteoblast, and MESP1+ CPC). Blue nodes are TFs up-
regulated in daughter 2 (ectoderm, myeloid, astrocyte, adipocyte and MESP1� CPC). Pointed arrows indicate activation, blunted arrows

(legend continued on next page)
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Table 1. Predicted Opposing Cell-Fate Determinant Pairs, Their Minimum Out-Degree Interface, Number of TFs in Their GRN Motifs,
Microarray Expression Values, and Figure Locations

Best Candidate
Opposing Cell-Fate
Determinant Pair

Minimum
Out-Degree
Interface

No. of TFs
in Strongly
Connected
Component

Log2(Expression)
Value in Progenitor

Log2(Expression)
Value in Daughter 1

Log2(Expression)
Value in
Daughter 2 Figure

1. mESC

Pou5f1-Sox2 8 4 10.63__11.05 4.26__3.13 2.58__7.85 3A

Sox17-Sox2 20 8 9.75__11.05 0.74__7.85 4.59__3.13 S1A

2. mHSC

Gata1-Fos 16 5 12.57__7.12 14.87__6.24 12.21__10.75 3E

Gata1-Cebpa 16 4 12.57__10.44 14.87__10.03 12.21__12.37 S1B

Gata1-Spi1 12 2 12.57__8.26 14.87__6.77 12.21__10.04 3B

Gata1-Gata2 10 5 12.57__14.79 14.87__15.69 12.21__16.88 S1C

Cux1-Irf1 4 8 10.40__13.38 10.56__11.95 9.51__14.64 S1D

3. mNSC

Esr1-Runx2 6 3 4.03__3.74 7.24__5.20 4.97__7.30 3D

Esr1-Stat5a 5 5 4.03__4.74 7.24__5.37 4.97__6.70 S1E

Mef2c-Hey1 1 6 6.82__5.67 13.14__9.52 8.67__11.05 S1F

4. mMSC

Runx2-Pparg 4 2 5.27__7.11 10.13__4.25 5.25__11.96 3C

5. hCPC

MYC-PBX1 6 4 10.11__9.03 10.24__7.48 9.48__9.02 S1G

MYC-NANOG 6 4 10.11__8.93 10.24__7.07 9.48__9.29 S1G

GATA4-NANOG 3 2 6.70__8.93 8.25__7.07 7.45__9.29 3F

GATA4-ID1 2 3 6.70__12.48 8.25__10.06 7.45__12.28 3F

Columns 4–6 indicate normalized log2 microarray expression values. ‘‘Progenitor’’ indicates hESCs, mHSCs, mNSCs, mMSCs, and hESCs, ‘‘daughter 1
00 indicates

ectoderms, erythroids, neurons, osteoblasts, and MESP1+ CPCs, and ‘‘daughter 200 indicates mesoderms, myeloids, astrocytes, adipocytes and MESP1� CPCs,

respectively. Left TF and right TF in each pair are predicted cell-fate determinants for daughter 1 and daughter 2, respectively, when overexpressed. See

Experimental Procedures for the definition of minimum out-degree interface.
continuous simulation recapitulated the known dynamics

of the Gata1-Spi1 toggle switch (Figure 3B), in which the

progenitor state remained stable over time but reached

the erythroid state when either GATA1 was upregulated

or SPI1 was downregulated (Huang et al., 2007) (Figure S2).

On the other hand, the opposite myeloid differentiation
indicate inhibition. Asterisks indicate TFs that showed a significant NR
in mHSCs, (C) Runx2-Pparg pair in mMSCs, (D) Esr1-Runx2 pair in mNS
NANOG pairs in hCPCs.
(G) Lineage marker (TUJ1 and glial fibrillary acidic protein [GFAP]) im
5 days after transduction with lentiviruses encoding GFP (negative c
(H–K) Diagrams showing the percentage of TUJ1-positive (H, J) and G
ESR1, or RUNX2 (mean ± SEM; n R 420 cells, N = 3 independent mN
dynamics was also reproduced (Figure S2). In addition,

the more complex five-gene motif for the Gata1-Fos pair,

which includes the Gata1-Spi1 toggle switch (Figure 3E),

also exhibited the tristability corresponding to the three

cell types, and reached the expected erythroid or myeloid

state upon appropriate perturbation of any gene in the
D. GRN motifs of (A) Pou5f1-Sox2 pair in mESCs, (B) Gata1-Spi1 pair
Cs, (E) Gata1-Fos pairs in mHSCs, and (F) GATA4-NANOG and GATA4-

munostaining of cells cultivated under maintenance conditions for
ontrol), ESR1, or RUNX2. Scale bar, 20 mm.
FAP-positive (I, K) cells transduced with lentiviruses encoding GFP,
SC cultures; *p < 0.05, t test).
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motif (Figure S3). Hence, this continuous simulation study

demonstrates that, although our Boolean network-based

method does not consider the intermediate stem/progeni-

tor attractor state, the predicted GRN motif exhibited the

appropriate differentiation dynamics upon perturbation

of its genes.
ESR1 Induces Neuronal Differentiation and RUNX2

Induces Astrocyte Differentiation

To our knowledge, no well-defined cell-fate determinant

pair and their GRN motif are known for the mNSC sys-

tem. Our method predicted the Esr1-Runx2 pair as the

top candidate (Table 1), which stabilizes the three cell

types via a three-gene GRN motif (Figure 3D). To validate

this prediction, we performed the lentiviral transduction

experiment under mNSC maintenance conditions (Conti

et al., 2005). We used these conditions rather than differ-

entiation-inducing conditions, since the latter will have a

mixture of influences (i.e., both transduced TF and differ-

entiation signals coming from the media) and it is diffi-

cult to draw clear conclusions under these conditions.

The result confirmed a significant increase in the amount

of neuron-specific class III b-tubulin (TUJ1)-positive cells

upon overexpression of ESR1 in mNSCs (from 2.9% to

10%) (Figures 3G and 3H). Importantly, it did not induce

astrocyte differentiation (Figures 3G and 3I). Conversely,

overexpression of RUNX2 strongly induced astrocyte

differentiation (from 8% to 24%) (Figures 3G and 3K),

but this effect was restricted to the astrocyte lineage

only (no increase in TUJ1-positive cells) (Figures 3G and

3J). These data demonstrate that the predicted function

of TF pairs to induce lineage specifications can be vali-

dated experimentally, indicating the applicability of the

method described here to stem cell differentiation exper-

iments in general. Although our method has been shown

to predict cell-fate determinants for different cell line-

ages, including neurons and astrocytes, it can also be

applied for more specific cell subtypes, such as dopami-

nergic neurons or subventricular zone astrocytes. In these

cases additional cell type specific markers would be

required.
DISCUSSION

The interest in directed cell-fate determination in stem

cell biology and regenerative medicine has been increasing

over the years. However, due to the complexity of GRNs,

identification of cell-fate determinants and their func-

tionally important subnetworks (GRN motifs) that deter-

mine stem cell maintenance and differentiation remains

a challenge. Indeed, there have been a few attempts to

model cellular conversions by means of network biology
312 Stem Cell Reports j Vol. 7 j 307–315 j September 13, 2016
(Crespo and del Sol, 2013; Cahan et al., 2014; Zañudo

and Albert, 2015; Rackham et al., 2016; Jo et al., 2016)

using bulk transcriptome data. These previous studies

deal with transitions between two well-defined cell types,

such as reprogramming. As a complementary approach

to these studies, the present study provides a general-

ized network model of stem/progenitor differentiation,

providing insights into how pluri-/multipotent stem/

progenitor cells capable of differentiating into multiple

distinct lineages are maintained by the balanced gene

expression of cell-fate determinants. In addition, the

applicability of the aforementioned previous methods ap-

pears to be limited to cell types, for which not only tran-

scriptome data but also other types of data, such as gene

ontology and curated GRNs, are already available. The

computational method presented in this study requires

only bulk transcriptome data and literature knowledge

of TF interactions.

Experimental validation of predicted cell-fate deter-

minants confirmed that overexpression of ESR1 and

RUNX2 in mNSCs induces neuronal and astrocyte differ-

entiation, respectively. Indeed, it has been previously

shown that overexpression of ESR1 was able to induce dif-

ferentiation in neuroblastoma cells (Loven et al., 2010;

Ma et al., 1993). In addition, embryonic rat NSCs have

been shown to undergo neuronal differentiation in

response to an ESR1 ligand, estradiol (Brannvall et al.,

2002). However, until the present study evidence that

overexpression of ESR1 is able to induce differentiation

of mNSCs into neurons has been lacking. Furthermore,

RUNX2 is well known for inducing differentiation of

MSCs into osteoblasts (Banerjee et al., 1997; Ducy et al.,

1997; Komori et al., 1997; Otto et al., 1997) but it has

not been previously shown to induce astrocyte differenti-

ation, which demonstrates how a same gene can have

different lineage specification roles depending on the

biological context characterized by GRN motifs. Inter-

estingly, the induction of neuronal differentiation by

ESR1 is not as strong as the induction of astrocytes

by RUNX2. Most probably this is because the utilized

mNSC system mimics the developmental stage of late

radial glia cells, which are more primed toward the astro-

cyte fate (Conti and Cattaneo, 2010; Conti et al., 2005);

consequently, their induction into this fate is easier

than neuronal induction.

In sum, here we have proposed a generalized GRN-based

computational model of stem cell differentiation and a

computational method that systematically predicts cell-

fate determinants and their GRN motifs. The generality

and simplicity of this method makes it easy to apply to

new cellular differentiation events, and therefore can assist

in guiding experiments in stem cell biology and regenera-

tive medicine.



EXPERIMENTAL PROCEDURES

Detection of TF Pairs Whose Expression Ratio Is

Significantly Changed upon Differentiation
The test statistic NRD, determining whether a pair of genes is

equally expressed in the parental cell in comparison with the

daughter, cell is defined by

NRD=

 
C

Progenitor
gene1

C
Progenitor
gene2

� C
Daughter
gene1

C
Daughter
gene1

!
 

C
Progenitor
gene1

C
Progenitor
gene2

! ;

where CProgenitor
gene1 , CProgenitor

gene2 , CDaughter
gene1 , and CDaughter

gene2 are the expression

values of gene 1 and gene 2 in the progenitor cell and a daughter

cell, respectively. This value was calculated for all pairs of TFs an-

notated in AnimalTFDB (http://www.bioguo.org/AnimalTFDB/

download/gene_list_of_Mus_musculus.txt). Since the distribution

of NRDs was not Gaussian, they were then normalized by median

absolute deviation (MAD) normalization defined by

bXj =
Xj �median

MAD
;

where Xj is the NRD of gene pair j and bXj is the normalized NRD,

and the median and MAD are computed based on all NRDs. This

normalized NRD was computed for each microarray replicate,

and themoderated t significance test of this statisticwas performed

using the limma R package. The Benjamini-Hochbergmultiple test

correction was then applied with a false discovery rate cutoff of

0.05. This procedure was applied to each of the two cell lineages

(two daughter cell types) separately, and TF pairs that had a signif-

icant NRD in both lineages in the opposite ratio directions were

taken as the final set. We call these gene pairs ‘‘significant NRD

TF pairs.’’ Note that this p-value cutoff was set arbitrarily; however,

the stringency can be adjusted by this p-value cutoff as well as that

for the initial differential gene-expression test.

Prediction of Cell-Fate Determinant Pairs and Their

GRN Motifs
The flowchart of this part of themethod is shown in Figure S4. Our

model of stem cell differentiation states that stem/progenitor cells

correspond to stable states maintained by the balanced expression

of cell-fate determinants residing in clusters of interconnected

feedback loops (strongly connected components), Therefore, our

aim here is to identify strongly connected components that

contain significant NRD TF pairs and stabilize the Boolean stable

steady states of the twodaughter cell types. However, if one is inter-

ested in how these GRN motifs are connected to other genes, the

entire GRN can be looked up.

In each of the best GRN solutions the largest strongly connected

component was first identified using the Graph::Directed Perl

module (http://search.cpan.org/dist/Graph/lib/Graph.pod). Each

strongly connected component was then decomposed into smaller

strongly connected components by first finding the first 300 short-

est path-elementary circuits from each node using the graphkshor-

testpaths.m program (http://www.mathworks.com/matlabcentral/

fileexchange/35397-k-shortest-paths-in-a-graph-represented-by-a-
sparse-matrix–yen-s-algorithm-/content/graphkshortestpaths.m).

Here we employed shortest paths, since we later consider directly

connected genes as candidate cell-fate determinants and paths

longer than shortest paths are not necessary for this step. For each

of these decomposed strongly connected components, the attractor

states were computed from the Booleanized microarray expression

dataof the twodaughter cell types. If these twoattractorsweremutu-

ally exclusive and 100% identical to the attractors of the original

GRN and to their starting microarray data, the motif was kept for

subsequent analyses.Wediscarded strongly connected components

whose attractors are either all 0 or 1, since our target motifs need to

contain at least one upregulated TF for both attractors as potential

candidate lineage specifiers. For each significant NRD TF pair, the

most frequent strongly connected componentwas searched among

the best GRN solutions and if the two TFs in the pair were directly

connected to each other in that strongly connected component,

the pair was considered the final candidate opposing cell-fate deter-

minant pair together with its GRN motif. Note that these criteria

were stringently set in the present study to demonstrate the proof

of concept of the method. However, they can be easily relaxed and

a longer list of candidate pairs and motifs can be assessed. In each

stem cell system, candidate opposing cell-fate determinant pairs

were rankedby theirminimumout-degree interface (i.e., the smaller

number of genes regulated by one of the two genes within the pair),

since a pair with a higher number of out-degree interface is more

likely to have a higher regulatory influence on the GRN.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and four figures and can be found with this article

online at http://dx.doi.org/10.1016/j.stemcr.2016.07.014.
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Supplementary Table and Figure legends

Figure S1.   Predicted opposing cell  fate determinant pairs and their  strongly connected

components in mESC, mHSC, mNSC, mMSC and hCPC systems.

Red nodes are genes upregulated in daughter 1 (mesoderm, erythroid, neuron, osteoblast and

MESP1+ CPC, respectively). Blue nodes are genes upregulated in daughter 2 (ectoderm, myeloid,

astrocyte, adipocyte and MESP1- CPC, respectively). Pointed arrows indicate activation, blunted

arrows indicate inhibition. Network motifs of (A) Sox17—Sox2 pair in mESCs, (B) Gata1—Cebpa

pair  in mHSCs, (C)  Gata1—Gata2 pair  in  mMSCs, (D)  Cux1—Irf1 pair  in  mHSCs, (E)  Esr1—

Stat5a pairs in mNSCs, and (F) Hey1—Mef2c pair in mNSCs, and (G) MYC—NANOG and MYC—

PBX1 pairs in hCPCs. * indicates predicted cell fate determinants.

Figure S2.  Time trajectories of deterministic continuous simulation of Gata1—Spi1 toggle

switch (Figure 3B) upon perturbation.

Expression of GATA1 and SPI1 at stable steady states were defined as [1, 1], [2, 0] and [0, 2] in

arbitrary unit for mHSC progenitors, erythroids and myeloids, respectively (see Methods). Initial

conditions are (A) GATA1 overexpression, (B) GATA1 inhibition, (C) SPI1 overexpression, and (D)

SPI1 inhibition. (A) and (D) reached erythroid stable steady state, whereas (B) and (C) reached

myeloid  stable  steady  state.  ODEs  and  estimated  parameters  are  shown  in  (Supplementary

methods).

Figure S3.  Time trajectories of continuous model for 5-gene motif containing Gata1,  Fos,

Ikzf1, Stat3 and Spi1 shown in Figure 3E.

Expression of GATA1, FOS, IKZF1, STAT3 and SPI1 at stable steady states were defined as [1, 1,

1, 1, 1],  [2,  0,  0, 0, 0] and [0, 2, 2, 2, 2] in arbitrary unit  for HSC progenitors, erythroids and

myeloids, respectively (see Methods). Initial conditions are (A) GATA1 overexpression, (B) GATA1

inhibition, (C)  SPI1 overexpression,  (D)  SPI1 inhibition,  (E)  FOS overexpression, and (F)  FOS

inhibition. (A), (D) and (F) reached erythroid stable steady state, whereas (B), (C) and (E) reached

myeloid stable steady state. The progenitor state remained stable at [1, 1, 1, 1, 1] (not shown).

ODEs and estimated parameters are shown in (Supplemental methods).

Figure S4.  Flowchart of the method.

Three transcriptome data for stem/progenitor cell type and two daughter cell types are used for

computing significant NRD TF pairs. In parallel, GRNs are reconstructed using transcriptome data

for two daufhter cell types. Each GRN is then decomposed into a strongly connected component

(SCC), which is then further decomposed into smaller SCCs. Finally, SCCs with significant NRD TF

pairs, which satisfy the presented criteria are considered thd final predictions.



Supplemental Experimental Procedures

Microarray data processing and analysis

Micorarray  data  of  five  stem  cell  systems  (mESC,  mHSC,  mNSC,  mMSC  and  hCPC)  were

obtained from the following sources. For the mESC system, mESCs (GSM720404, GSM720405,

GSM720406,  GSM720407,  GSM720408,  GSM720409,  GSM720410,  GSM720412),  ectoderms

(GSM338146,  GSM338150,  GSM338152,  GSM338156),  and  mesoderms  (GSM747049,

GSM747050, GSM747051). The data for the mHSC system was taken from  (May et al., 2013),

including  mFDCPs  (GSM1211192,  GSM1211193,  GSM1211194),  erythroids  (GSM1211279,

GSM1211280, GSM1211281), and myeloids (GSM1211366, GSM1211367, GSM1211368). The

data  for  the  mNSC  system  consists  of  mNSCs  (Palm  et  al.,  2013),  neurons  (GSM241896,

GSM241897,  GSM241899,  GSM241901,  GSM241903,  GSM241904  and  GSM241922),  and

astrocytes  (GSM241905,  GSM241906,  GSM241907,  GSM241909,  GSM241910,  GSM241911,

GSM241913,  GSM241923 and GSM241924)  (Cahoy et  al.,  2008).  The data for  mMSCs were

obtained  from  GSM1180589,  GSM1180590  and  GSM1180591,  osteoblasts  from GSM234794,

GSM234795,  GSM234796,  and  GSM234797  (Schroeder  et  al.,  2007) and  adipocytes  from

GSM1254880, GSM1254881, GSM1254882 and GSM1254883 (Ralston et al., 2014). The data for

the differentiation of hESCs (Day 0) into MESP1+ CPCs and MESP1- CPCs (Day 3) were taken

from (Den Hartogh et al., 2015). 

Raw intensity values were normalized by variance stabilising normalization using the vsn R

package  (Huber et al.,  2002). Quantile normalization was performed when the platforms within

each stem cell system were different (i.e., mESC, mNSC and mMSC systems). The differential

expression analysis was performed by a moderated t-test using the limma R package  (Smyth,

2004) between the ectoderm and mesoderm, erythroids and myeloids, neurons and astrocytes,

osteaoblasts and adipocytes, and MESP1+ CPCs and MESP1- CPCs. Genes were binned into 30

bins  by  intensity  and  the  moderated t-test  was  applied  to  each  bin.  The  Benjamini-Hochberg

multiple test correction was applied with the false discovery rate (FDR) cutoff 0.05. In all the cases

genes with mean log2 fold-change less than 1 were discarded. When a gene had more than one

microarray probe, the one with the highest variance across samples was used for subsequent

analysis. 

GRN reconstruction

Direct  gene  interactions  between  the  two  daughter  cells  in  each  differentiation  system  were

retrieved from MetaCore (GeneGo Inc. (Nikolsky et al., 2005)) using differentially expressed TFs.

The  dates  of  download  were  between  March  and  August  of  2014.  The  interaction  types

"Transcriptional regulation" and "Binding" identified in both mouse and human were kept for the

subsequent  analyses.  In addition,  genes with node degree less than seven were discarded to

focus  on  genes  with  high  degrees,  since  these  genes  were  not  forming  strongly  connected



components in the initial GRN and therefore would not be in the final GRNs. The network edge

(interaction) pruning was performed using the modified version of the method proposed by (Crespo

et  al.,  2013)  re-implemented in MATLAB using the genetic  algorithm (ga) function.  Briefly,  this

algorithm assumes that each cellular phenotype is a Boolean stable steady state attractor of a

given network, and removes edges that are inconsistent with the Booleanized mRNA expression

data. This pruning was conducted between the two daughter cell types, which resulted in GRNs

whose Boolean attractor states correspond to the gene expression states of both daughter cell

types. The genetic algorithm was run between 1000-1500 populations and 100 iterations. Although

the current version of our algorithm does not regularize potential overfitting, we alleviate this issue

by  considering  all  best  GRN solutions  for  subsequent  analyses,  although  this  might  not  fully

resolve potential overfitting.  The Boolean simulation was carried out using the pbn-matlab-toolbox

(http://code.google.com/p/pbn-matlab-toolbox/downloads/list)  using  the  synchronous  updating

scheme. The node weights were set to all 1. The logic rule was defined, so that the number of

activating edges and inhibiting edges acting on a gene were compared and the one with a higher

number dominates (i.e., the threshold rule). If both numbers are the same, the state was set to 0

(i.e., inhibition dominant).  During this process, "unassigned" interactions (i.e., interactions without

knowledge of activation or inhibition) were randomly assigned "activation" or "inhibition" and the

one that yielded a better result was taken for the next generation. GRN motifs were visualized in

Cytoscape (version 2.7.0) (Shannon et al., 2003).

Deterministic continuous simulation

The dynamics of relative protein abundance was modelled using the ODEs with the "OR" logic

described  in  (Huang  et  al.,  2007),  which  draw  on  the  Michaelis-Menten  formalism  with  Hill

coefficients.  The microarray expression value of each gene in the motif was ordered among the

three different cell types (stem/progenitor and two daughter cells) and assigned three integers, 0, 1

or 2, for the low, intermediate and high expression values. For example, if a gene has log2 gene

expression values 6, 8 and 10 for the daughter cell 1, progenitor, and daughter cell 2, then the

integers 0, 1 and 2 were assigned to each stable steady state, respectively. Then the parameters

were estimated by equating the ODEs to 0 at these three stable steady states. Note, we did not

impose any constraint on the dynamics of the system, since the purpose of this simulation study is

to illustrate that the predicted GRN motif can, upon perturbation of its genes, exhibit the expected

binary differentiation dynamics from the steady state corresponding to the stem/progenitor  cell

type, Since this problem is intractable and it is infeasible to explore the entire parameter space, we

used  MATLAB's  "fmincon"  function  (interior-point  method),  which  was  combined  with  the

"GlobalSearch" function. The initial parameters were all set to 1 and the parameter boundary was

set between 0.01 and 20. The solutions to ODEs were approximated by the 1st Taylor series using

the MATLAB "taylor" function. The simulation was carried out using the Systems Biology Toolbox

for MATLAB (Schmidt and Jirstrand, 2006). The "ode23s" function was used for solving ODEs. 

http://code.google.com/p/pbn-matlab-toolbox/downloads/list


 The set of ODEs for the Gata1-Spi1 toggle switch (Figure 3B) is,
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where n  = 7.4207, a11  = 4.824, a12  = 4.8712, a22  = 4.824, a21  = 4.8712, K1  = 0.91729, K1  =

0.91729, γ 1  = 4.8403, γ 2  = 4.8403. The set of ODEs for the motif shown in (Figure 3E) is,
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where n  = 12.311, a11  = 4.5282, a13  = 2.8374, a15  = 2.8374, a21  = 7.1558, a24  = 6.5507, a25

= 6.5507, a31  = 4.2685, a34  = 6.8057, a41  = 4.2684, a42  = 6.8064, a51  = 4.2683, a55  = 6.805,

K 11  = 1.2849, K 13  = 1.1608, K 15  = 1.1608, K 21  = 1.082, K 24  = 1.0417, K 25  = 1.0417, K 31  =

1.1068, K 34  = 1.0608, K 41  = 1.1046, K 42  = 1.0597, K 51  = 1.1027, K 55  = 1.0588, γ 1  = 5.0918,
γ 2  = 10.126, γ 3  = 5.5357, γ 4  = 5.5361, γ 5  = 5.5353. All the models described above remained

in the stable steady states corresponding to the three cell types. It is worth noting that there may

exist different other sets of parameters, apart from the ones we showed here, that also reproduce

the three stable states and the correct  dynamics.  Thus,  our  model  provides only  a qualitative

analysis of the state-space of the motifs.

Pseudo-code for identification of key GRN motifs

## 1. Decompose strongly connected components (SCCs) into smaller SCCs ##

# Best GRN solutions are the result from the previous step of GRN pruning, which gives rise to



# multiple equally best solutions
get all best GRN solutions;

loop through each best GRN solution
      find largest SCC;

      loop through each node in the SCC
            find n shortest paths starting from the node and coming back to it (i.e., feedback loops);
            from the GRN solution, extract all edges among the nodes in each shortest path (i.e., 
            decomposed SCC;

save the decomposed SCCs;

      end loop

      # Discard duplicated topologically identical, decomposed SCCs
      get unique decomposed SCCs;

      loop through each decomposed SCC
            if (the SCC contains at least one node whose Booleanized gene expression state is up for 

both daughter cell types):

                  compute Boolean attractors of the SCC with the initial states being the Booleanized gene
                  expression states of the two daughter cell types;

                  if (the computed two attractor states of the nodes in the SCC are identical to the 
                  computed two attractor states of the entire GRN solution):
                        if (the computed two attractor states of the nodes in the SCC are identical to the 
                        Booleanized gene expression states of the two daughter cell types):

                              keep the SCC;

                        end if
                  end if                  

            end if
      end loop

end loop 

## 2. Compute the frequency of SCCs containing each significant NRD TF pair ##

get all significant NRD TF pairs;

loop through each significant NRD TF pair
      loop through decomposed SCCs from 1. 
            if (the SCC contains both TFs):

                  compute the frequency of the SCC among all the best GRN solutions;

            end if



      end loop
end loop

Reagents and plasmids

For  immunolabelling  the antibodies  anti-TUJ1 (BioLegend,  #801201)  and anti-GFAP (Millipore,

#MAB3402) were used. Alexa-fluorophore-conjugated antibodies (Invitrogen, #A11031) were used

as secondary antibodies. DNA was counterstained using Hoechst 33258 (Invitrogen, #62249). The

following plasmids were used: pCMV-VSV-G, psPAX2 (lentiviral packaging plasmids) (Addgene),

pLenti-Runx2-C-mGFP, pLenti-Esr1-C-mGFP (Origene) and pGIPZ pMB049 (Marc Buehler).

Cell culture

Primary  NSCs  were  isolated  from  C57BL/6N  mouse  brains  at  embryonic  day  12.5-14.5  and

cultivated as described previously (Conti and Cattaneo, 2010; Conti et al., 2005). Briefly, primary

NSCs were  kept  on  poly-D-Lysine  (Sigma)-coated  10-cm polystyrene  tissue  culture  dishes  in

DMEM/Ham’s F12 medium (PAA) supplemented with 10 ng/mL EGF (Peprotech), 10 ng/mL bFGF-

2  (Peprotech),  1  x  N2  (Invitrogen),  L-Glutamine  (PAA),  and  Penicillin/Streptomycin  (PAA).

HEK293T cells were cultivated on uncoated 10-cm polystyrene tissue culture dishes in DMEM

(Sigma)  supplemented  with  10%  heat-inactivated  FCS  (PAA),  L-Glutamine  (PAA)  and

Penicillin/Streptomycin (PAA).

Lentivirus production

Lentiviruses  were  produced  using  a  three-plasmid  transfection  protocol.  One  day  prior  to

transfection, HEK293T cells were seeded in 10-cm polystyrene tissue culture dishes. The next day,

the  lentiviral  packaging  plasmids  pCMV-VSV-G  and  psPAX2  were  mixed  with  either  pGIPZ

pMB049, pLenti-Runx2-C-mGFP or pLenti-Esr1-C-mGFP and the HEK293T cells were transfected

with these plasmids using Fugene6 (Promega) according to manufacturer`s instructions. Three

days  post  transfection,  the  supernatants  were  harvested  and cleared from remaining cells  by

centrifuging for 10 min at 3,000 x g and 4 °C. The supernatant was mixed with 1/5 volume of 40%

PEG  and  incubated  overnight  at  4  °C.  The  next  day,  the  lentivirus  was  concentrated  by

centrifugation for 30 min at 1,500 x g and 4 °C. After removal of the supernatant, the pellet was

centrifuged again for 5 min at 1,500 x g and 4 °C. The remaining supernatant was removed and

the pellet was resuspended in an appropriate amount of DMEM without supplements and stored at

-80 °C. 

Viral transductions

For  viral  transduction,  primary  NSCs  were  seeded  onto  poly-D-Lysine-coated  coverslips  at  a

density of 25,000 cells / well. One day after seeding the virus was diluted in growth medium and

added  to  the  cells.  At  two  and  four  days  post  transduction,  half  of  the  growth  medium  was



exchanged by fresh growth medium. 

Immunocytochemistry

For immunocytochemical staining, cells were fixed with 4% paraformaldehyde in 120 mM PBS, pH

7.4 (4% PFA/PBS) followed by permeabilisation for 3 min at 4 °C using 0.05% Triton X-100 in PBS.

Next, cells were blocked with 10% FCS in PBS for 1 h at RT and subjected to immunofluorescence

staining with primary and secondary antibodies diluted in blocking solution. Images were collected

with a Zeiss epifluorescence microscope and image analysis was conducted using ZEN lite (Zeiss)

and Adobe Photoshop softwares. 
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