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EM ALGORITHM FOR HIDDEN MARKOV MODEL

Without missing data

We begin with the situation where there is no missing data in the dataset. Once we have derived the EM algorithm,
the situation where there are missing data can be handled with few modifications.

Suppose that we have temporal measurements x1,x2, · · · ,xT , and we assume that their latent states are
z1, z2, · · · , zT . Suppose that there are K states in the hidden Markov model. Each xt is a D-dimensional vector
of observed data, and zt is a K-dimensional binary vector with components that add up to 1, where ztj = 1 means
xt is at state j. The joint probability distribution for hidden Markov model is given by

p(x1, · · · ,xT , z1, · · · , zT ) = p(z1)

[
T∏

t=2

p(zt|zt−1)

]
T∏

t=1

p(xt|zt) (1)

We represent the initial probability by a vector of probabilities πππ with elements πk ≡ p(z1k = 1), and
∑K

k πk = 1.

We represent the transition probability matrix as A, where Ajk ≡ p(ztk = 1|zt−1,j = 1), and
∑K

k Ajk = 1. Thus we
have

p(z1|πππ) =

K∏
k=1

πz1k
k , (2)

and

p(zt|zt−1,A) =

K∏
k=1

K∏
j=1

A
zt−1,jztk
jk . (3)

We assume the emission probability p(xt|zt) follows a Gaussian distribution. We have xt|(ztk = 1) ∼ N (µµµk,ΣΣΣk),
where µµµk and ΣΣΣk are the mean vector and covariance matrix for state k, respectively. Thus we have

p(xt|zt,µµµ,ΣΣΣ) =

K∏
k=1

p(xt|µµµk,ΣΣΣk)ztk . (4)

We can write down the log of the joint probability distribution given the parameters θθθ = (πππ,A,µµµ,ΣΣΣ) as

logp(x1, · · · ,xT , z1, · · · , zT ) =

K∑
k=1

z1klogπk +

T∑
t=2

K∑
j=1

K∑
k=1

zt−1,jztklogAjk +

T∑
t=1

K∑
k=1

ztklogp(xt|µµµk,ΣΣΣk). (5)

The EM algorithm [1] is typically used to estimate the parameters in the hidden Markov model. The EM algorithm
tries to maximize the expectation of the complete-data log likelihood function (5) given the posterior distribution of
Z, which is

Q(θθθ,θθθold) =

K∑
k=1

Ez[z1k]logπk +

T∑
t=2

K∑
j=1

K∑
k=1

Ez[zt−1,jztk]logAjk +

T∑
t=1

K∑
k=1

Ez[ztk]logp(xt|µµµk,ΣΣΣk). (6)
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In the E step, we use the current parameters to evaluate the expectation of the complete-data log likelihood
function, and in the M step, we maximize the expectation of the complete-data log likelihood function and update the
parameters. We need to evaluate the expectations Ez[zt] = p(zt|X, θθθ) and Ez[zt−1zt] = p(zt−1, zt|X, θθθ). We write
γ(ztk) = EZ[ztk] and ξ(zt−1,j , ztk) = Ez[zt−1,jztk]. The forward-backward algorithm [1] is used to estimate them.
The forward-backward algorithm basically calculates

α(zt) ≡ p(x1, · · · ,xt, zt) (7)

β(zt) ≡ p(xt+1, · · · ,xT |zt). (8)

Following the forward algorithm, we have

α(zt) = p(xt|zt)
∑
zt−1

α(zt−1)p(zt|zt−1), (9)

where the initial condition is given by

α(z1) = p(x1, z1) =

K∏
k

{πkp(x1|µµµk,ΣΣΣk)} . (10)

Following the backward algorithm, we have

β(zt) =
∑
zt+1

β(zt+1)p(xt+1|zt+1)p(zt+1|zt), (11)

where the initial condition is β(zT ) = 111. And we have

γ(zt) =
α(zt)β(zt)

p(X)
, (12)

where p(X) is the likelihood function and can be obtained by

p(X) =
∑
zT

α(zT ), (13)

and

ξ(zt−1, zt) =
α(zt−1)p(xt|zt)p(zt|zt−1)β(zt)

p(X)
. (14)

We have omitted all the derivations of the forward-backward algorithm. For detailed derivations, please refer to [1].
Once we have obtained the γ(zt) and ξ(zt−1, zt), we can go to the M step, where we use these expectations to

estimate the parameters. It follows the same solution steps for maximizing the likelihood of multinomial distribution
and Gaussian distribution. We have

πk =
γ(z1k)∑K
j=1 γ(z1k)

, (15)

Ajk =

∑T
t=2 ξ(zt−1,jztk)∑K

l=1

∑T
t=2 ξ(zt−1,jztl)

, (16)

µµµk =

∑T
t=1 γ(ztk)xt∑T
t=1 γ(ztk)

, (17)

ΣΣΣk =

∑T
t=1 γ(ztk)(xt −µµµk)(xt −µµµk)T∑T

t=1 γ(ztk)
. (18)

So the EM algorithm works as follows:

1. Initialize the parameters θθθ. We can use K-means algorithm and the resulting K clusters to initialize µµµ’s and
ΣΣΣ’s. We also initialize the log-likelihood to be −∞.
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2. E step Use the parameters θθθold to calculate γ(zt) and ξ(zt−1, zt) following the forward-backward algorithm.
We also calculate the new log-likelihood.

3. M step Update the parameters θθθ using γ(zt) and ξ(zt−1, zt).

4. If the absolute difference between the old and new log-likelihood is below a certain threshold, terminate the EM
algorithm and output θθθ. Update the old log-likelihood otherwise.

Notice that we have illustrated how to estimate θθθ from only one sequence of temporal measurements, for the purpose
of clarity. When there are multiple sequences of temporal measurements, we need to evaluate the γ and ξ for each
sequence in the E step. In the M step, we average over all the sequences to obtain the new θθθ. We will use the same
way to demonstrate the EM algorithm for hidden Markov model with MAR data.

With missing at random (MAR) data

When there are MAR data [2] in the dataset, each xt can be written as (xobs
t ,xmis

t ), where xobs
t and xmis

t are the
observed portion and the missing portion of of xt, respectively. So the corresponding log of the joint probability
distribution is

logp(xobs
1 , · · · ,xobs

T ,xmis
1 , · · · ,xmis

T , z1, · · · , zT )

=

K∑
k=1

z1klogπk +

T∑
t=2

K∑
j=1

K∑
k=1

zt−1,jztklogAjk +

T∑
t=1

K∑
k=1

ztklogp(xt|µµµk,ΣΣΣk). (19)

The corresponding expectation of the complete-data log likelihood function given the expectation of the posterior
distribution of Z and Xmis is

Q(θθθ,θθθold) =

K∑
k=1

Ez,xmis [z1k]logπk +

T∑
t=2

K∑
j=1

K∑
k=1

Ez,xmis [zt−1,jztk]logAjk +

T∑
t=1

K∑
k=1

Ez,xmis [ztklogp(xt|µµµk,ΣΣΣk)]. (20)

Because the expectations of ztk, zt−1,jztk only depend on Z and the expectations of logp(xt|µµµk,ΣΣΣk) only depend on
Xmis, we have

Q(θθθ,θθθold) =

K∑
k=1

Ez[z1k]logπk +

T∑
t=2

K∑
j=1

K∑
k=1

Ez[zt−1,jztk]logAjk +

T∑
t=1

K∑
k=1

Ez[ztk]Exmis [logp(xt|µµµk,ΣΣΣk)]. (21)

Note that we have already derived Ez[zt] and Ez[zt−1zt], which are γ(zt) and ξ(zt−1, zt) in (12) and (14). The only
difference is that the p(xt|zt) in equations (9) to (14) should be replaced with p(xobs

t |zt). Because the marginal dis-
tribution over a subset of multivariate Gaussian is still Gaussian distribution, we have xobs

t |(ztk = 1) ∼ N (µµµobs
k ,ΣΣΣobs

k ),
where µµµobs

k and ΣΣΣobs
k are the mean vector and covariance matrix after dropping the missing variables from µµµk and

ΣΣΣk. So p(xobs
t |µµµk,ΣΣΣk) = p(xobs

t |µµµobs
k ,ΣΣΣobs

k ) and therefore we can obtain p(xobs
t |zt). If all the data are missing at xt,

p(xobs
t |µµµk,ΣΣΣk) is simply 1.

In order to write down the E step, we need to obtain the Exmis [logp(xt|µµµk,ΣΣΣk)], k = 1, · · · ,K. Note that the
posterior distribution of xmis

t is a conditional distribution of a subset of variables from a multivariate Gaussian
distribution, which is also a Gaussian distribution. Because the complete X belong to the regular exponential family,
we only need to evaluate the expectation of the sufficient statistics, which are

∑T
t=1 xtj , where j = 1, · · · , D, and∑T

t=1 xtjxtl, where j, l = 1, · · · , D. Based on [2], the E step for kth state includes

Exmis,k

[
T∑

t=1

xtj

]
=

T∑
t=1

x̂
(k)
tj , j = 1, · · · , D (22)

and

Exmis,k

[
T∑

t=1

xtjxtl

]
=

T∑
t=1

(x̂
(k)
tj x̂

(k)
tl + ĉ

(k)
jln), j, l = 1, · · · , D (23)

given by

given by
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where

x̂
(k)
tj =

{
xtj , if xtj is observed.

E(xtj |xobs
t ,µµµk,ΣΣΣk), otherwise.

(24)

and

ĉ
(k)
jln =

{
0, if xtj or xtl is observed.

Cov(xtj , xtl|xobs
t ,µµµk,ΣΣΣk), otherwise,

(25)

where E(xtj |xobs
t ,µµµk,ΣΣΣk) and Cov(xtj , xtl|xobs

t ,µµµk,ΣΣΣk) are the conditional mean vector and covariance matrix of the
missing data xmis

t given the observed data xobs
t and the current parameters µµµk,ΣΣΣk.

To evaluate E(xtj |xobs
t ,µµµk,ΣΣΣk) and Cov(xnj , xnl|xobs

t ,µµµk,ΣΣΣk), we need to obtain the conditional distribution of the

missing features given the set of the observed features. The x̂
(k)
t is basically an imputed xt in state k where the

missing data are replaced by the conditional mean. An easy way to compute the conditional distribution is to use the
sweep operator to sweep the augmented covariance matrix [2]. In practice, we could calculate all the missing patterns
in the dataset in advance, and in each E step, for each state, we calculate the swept matrices for all missing patterns.
Then for each xt, we can estimate its conditional mean vector and covariance matrix by using the corresponding
swept matrix.

In the M step, we update the parameters by using the expectation we evaluated in the E step. We can do the same
with equations (15) and (16) to update of πk and Ajk. To update µµµk and ΣΣΣk, we have

µµµk =

∑T
t=1 γ(ztk)x̂

(k)
t∑T

t=1 γ(ztk)
, (26)

ΣΣΣk =

∑T
t=1 γ(ztk)

{
E
[
(x̂

(k)
t )(x̂

(k)
t )T

]
−µµµkµµµk

T
}

∑T
t=1 γ(ztk)

=

∑T
t=1 γ(ztk)

[
(x̂

(k)
t −µµµk)(x̂

(k)
t −µµµk)T + Ĉ

(k)
t

]
∑T

t=1 γ(ztk)
, (27)

where

Ĉ
(k)
t =

[
ĉ
(k)
jlt

]
j,l=1,··· ,D

. (28)

So the EM algorithm works as follows:

1. Initialize the parameters θθθ. We can use K-means and the resulting K clusters to initialize µµµ’s and ΣΣΣ’s. Note
that taking means of missing data may cause trouble, we can use all complete x’s in each cluster to initialize
µµµ’s and ΣΣΣ’s. We also initialize the log-likelihood to be −∞.

2. E step Use the parameters θθθold to calculate γ(zt) and ξ(zt−1, zt) and the new log-likelihood following the

forward-backward algorithm. We also calculate x̂
(k)
t and Ĉ

(k)
t from equations (24) and (25).

3. M step Update the parameters θθθ using γ(zt), ξ(zt−1, zt), x̂
(k)
t and Ĉ

(k)
t .

4. If the absolute difference between the old and new log-likelihood is below a certain threshold, terminate the EM
algorithm and output θθθ. Update the old log-likelihood otherwise.
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