Supplementary Material

Figure S1: (A) Variation in inter-spike interval of a single hepatocyte with model parameters. Increase in H from 1.5×10^{-10} M to 1.8×10^{-10} results in a decrease in inter-spike interval illustrating frequency encoding as observed experimentally. Increase in k_r or k_{IP3} causes a decrease in inter-spike interval. All parameter values except k_r , k_{IP3} , and H were fixed at the nominal values reported in Table S1. k_r was varied between 1 and 2/s, k_{IP3} was varied between 0.7 and 0.9 μ M/s while H took two values (1.5 and 1.8×10^{-10} M); (B) Spike frequency ranges for hepatocytes with varying vasopressin concentrations. For each vasopressin concentration value, 100 hepatocytes were initialized with uniformly sampled k_r values (ϵ [1, 2]/s) and k_{IP3} values (ϵ [0.7, 0.9] μ M/s), the remaining parameters fixed at their respective nominal values.

Parameter			
ID	Value		
k _r	1.5 /s		
k _d	0.34 /s		
k _{Hr}	1 /10 ⁻¹⁰ M-s		
Н	$1.8\times 10^{10}M$		
k _{IP3}	0.8 µM/s		
k _{cat}	0.45		
k ₃	1 µM		
D	1.6 /s		
G	NA		
А	0.2 µM/s		
k ₁	0.5 μM		
L	0.00015 µM/s		
В	0.082 µM/s		
k ₂	0.15 µM		
Е	$1/(\mu M)^4$ -s		
F	0.01 /s		

Table S1: Nominal parameter values

Table S2: Initial intracellular species concentrations in model simulations. In every simulation, initial concentration of intracellular signaling species acquired the following values

Species ID	Value
r _i	0.5
IP3 _i	0.1 µM
CaI _i	0.2 µM
CaT _i	500 µM
g _i	0.25

Table S3: Parameter values used in **Figure 2**; **2A**: All hepatocytes were initialized with parameter and initial values reported in Tables S1 and S2 respectively. $G_{ij} = \{0, 0.9\}$ for all i,j pairs represent uncoupled and gap junction coupled hepatocytes; **2B**: Nominal values were used for all parameters *except* k_r and k_{IP3} . Values used for these parameters were:

	k _r	k _{IP3}	
Hepatocyte 1	1	0.785714	
Hepatocyte 2	1.5	0.885714	
Hepatocyte 3	1.928571	0.757143	
Hepatocyte 4	1.357143	0.857143	
Hepatocyte 5	1.857143	0.842857	
Hepatocyte 6	1.785714	0.814286	
Hepatocyte 7	1.571429	0.742857	
Hepatocyte 8	1.714286	0.828571	
Hepatocyte 9	1.142857	0.771429	
Hepatocyte 10	1.642857	0.728571	
Hepatocyte 11	1.428571	0.714286	
Hepatocyte 12	2	0.871429	
Hepatocyte 13	1.214286	0.9	
Hepatocyte 14	1.071429	0.7	
Hepatocyte 15	1.285714	0.8	
$G_{ij} = \{0, 0.9\}$ for all i, j pairs.			

Table S4: Parameters used to generate Figure 3. Only kr (Figure 5A) or kIP3 (Figure 5B) values for each hepatocyte
were varied, the other parameter fixed at its nominal value:

	Fig. 3A	Fig. 3B
Variable parameter ID	k _r	k _{IP3}
Hepatocyte 1	2	0.9
Hepatocyte 2	1.928571	0.885714
Hepatocyte 3	1.857143	0.871429
Hepatocyte 4	1.785714	0.857143
Hepatocyte 5	1.714286	0.842857
Hepatocyte 6	1.642857	0.828571
Hepatocyte 7	1.571429	0.814286
Hepatocyte 8	1.5	0.8
Hepatocyte 9	1.428571	0.785714
Hepatocyte 10	1.357143	0.771429
Hepatocyte 11	1.285714	0.757143
Hepatocyte 12	1.214286	0.742857
Hepatocyte 13	1.142857	0.728571
Hepatocyte 14	1.071429	0.714286
Hepatocyte 15	1	0.7

	Figure 4A	Figure 4B	Figure 4C	Figure 4D
	k _{IP3}	k _{IP3}	k _{IP3}	k _{IP3}
Hepatocyte 1	0.9	0.8	0.7	0.728571
Hepatocyte 2	0.885714	0.8	0.714286	0.714286
Hepatocyte 3	0.871429	0.8	0.728571	0.828571
Hepatocyte 4	0.857143	0.8	0.742857	0.857143
Hepatocyte 5	0.842857	0.8	0.757143	0.771429
Hepatocyte 6	0.828571	0.8	0.771429	0.7
Hepatocyte 7	0.814286	0.8	0.785714	0.785714
Hepatocyte 8	0.8	0.8	0.8	0.742857
Hepatocyte 9	0.785714	0.8	0.814286	0.9
Hepatocyte 10	0.771429	0.8	0.828571	0.757143
Hepatocyte 11	0.757143	0.8	0.842857	0.871429
Hepatocyte 12	0.742857	0.8	0.857143	0.8
Hepatocyte 13	0.728571	0.8	0.871429	0.814286
Hepatocyte 14	0.714286	0.8	0.885714	0.842857
Hepatocyte 15	0.7	0.8	0.9	0.885714

Table S5: k_{IP3} values used in Figure 4 with other hepatocyte parameters at nominal values. k_r gradient was the same as that used in Figure 3A.

Table S6: k_r and G_{ij} values were systematically varied across the sinusoid to obtain **Figure 5**. Variations in k_r in **Figure 5-A**, **B**, and **C** were as follows:

	Figure 5A	Figure 5B	Figure 5C
	k _r	k _r	k _r
Hepatocyte 1	0.5	2	2
Hepatocyte 2	0.5	1.928571	1.888889
Hepatocyte 3	0.5	1.857143	1.777778
Hepatocyte 4	0.5	1.785714	1.666667
Hepatocyte 5	0.5	1.714286	1.555556
Hepatocyte 6	2	0.5	1.444444
Hepatocyte 7	1.888889	0.5	1.333333
Hepatocyte 8	1.777778	0.5	1.222222
Hepatocyte 9	1.666667	0.5	1.111111
Hepatocyte 10	1.555556	0.5	1
Hepatocyte 11	1.444444	1.285714	0.5
Hepatocyte 12	1.333333	1.214286	0.5
Hepatocyte 13	1.222222	1.142857	0.5
Hepatocyte 14	1.111111	1.071429	0.5
Hepatocyte 15	1	1	0.5

While all G_{ij} values were equal to 0.9 for all hepatocytes pairs in case of Ca^{2+} signal propagation shown in Figure 5-A, B and C, column I, they were variable for columns II and III. For columns II and III, G_{ij} values were:

Figure 5A: $G_{ij} = 2$ (column II) or 5 (column III) for $\{i, j\} = \{1, 2\}, \{2, 1\}, \{2, 3\}, \{3, 2\}, \{3, 4\}, \{4, 3\}, \{4, 5\}, \{5, 4\}, \{5, 6\}; G_{ij} = 0.9$ otherwise

Figure 5B: $G_{ij} = 2$ (column II) or 5 (column III) for {i,j} = {5,6}, {6,5}, {6,7}, {7,6}, {7,8}, {8,7}, {8,9}, {9,10}, {10,9}, {10,11}, {11,10}; $G_{ij} = 0.9$ otherwise

Figure 5C: $G_{ij} = 2$ (column II) or 5 (column III) for {i,j} = {10,11}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,13}, {14,15}; $G_{ij} = 0.9$ otherwise

Supplement S7: MATLAB Code

Supplement S8: SBML Model

The SBML model was created using VCell^[1] 5.3 (build 12).

References:

[1]: Moraru, Ion I., et al. "Virtual Cell modelling and simulation software environment." IET systems biology 2.5 (2008): 352-362.