Supporting material for: Identification of control targets in Boolean molecular network models via computational algebra

David Murrugarra¹ Alan Veliz-Cuba^{2,3} Boris Aguilar⁴ Reinhard Laubenbacher⁵

> ¹Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027 USA. ²Department of Mathematics, University of Dayton, Dayton, OH 45469, USA. ⁴Institute for Systems Biology, Seattle, WA 98109-5263 USA. ⁵Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030-6033 USA.

1 A Method for Checking Reachability

In this section we describe an algebraic technique for checking the global reachability of a desired attractor using the controllers identified with the methods described in Section 3 of the paper. These methods are similar to those described in [2].

Consider $\mathbf{x}_0, \mathbf{y}_0 \in \mathbb{K}^n$ as in Section 3 of the paper, that is, \mathbf{y}_0 is the newly created desired attractor, and set the following ideal

$$I_{\mathbf{y}_0}^{\mu} = \langle f_1^{\mu}(x_1, \dots, x_m) - y_{01}, \dots, f_m^{\mu}(x_1, \dots, x_m) - y_{0n} \rangle \tag{1}$$

defined over the quotient ring $\mathbb{F}_2[x_1, \ldots, x_m]/J$, where $J = \langle x_1^2 - x_1, \ldots, x_m^2 - x_m \rangle$. Notice that the variety $V(I_{\mathbf{y}_0}^{\mu})$ of the ideal $I_{\mathbf{y}_0}^{\mu}$ represents all predecessor states of \mathbf{y}_0 , that is, all the states $\mathbf{x} \in \mathbb{K}^n$ such that $\mathbf{F}_{\mu}(\mathbf{x}) = \mathbf{y}_0$. Let $\mathbf{F}_{\mu^r}(\mathbf{x}) = \mathbf{F}_{\mu}(\cdots(\mathbf{F}_{\mu}(\mathbf{x})))$ (r times composition) and let $f_i^{\mu^r}(x_1,\ldots,x_m)$ be the *j*th-component function of $\mathbf{F}_{\mu^r}(\mathbf{x})$. Then define

$$I_{\mathbf{y}_0}^{\mu^r} = \langle f_1^{\mu^r}(x_1, \dots, x_m) - y_{01}, \dots, f_m^{\mu^r}(x_1, \dots, x_m) - y_{0n} \rangle$$
(2)

Similarly, the variety $V(I_{\mathbf{y}_0}^{\mu^r})$ of the ideal $I_{\mathbf{y}_0}^{\mu^r}$ represents all states that are *r*-steps away from \mathbf{y}_0 , that is, all the states $\mathbf{x} \in \mathbb{K}^n$ such that $\mathbf{F}_{\mu^r}(\mathbf{x}) = \mathbf{y}_0$.

Proposition 1.1. Let $\mathbf{x}_0, \mathbf{y}_0 \in \mathbb{K}^n$. Then \mathbf{y}_0 is reachable from \mathbf{x}_0 if $\mathbf{x}_0 \in V(I_{\mathbf{y}_0}^{\mu^r})$ for some $r \geq 1$.

Proof. It follows from the definition of $V(I_{\mathbf{y}_0}^{\mu^r})$.

Now consider the ideals

$$J_1 = I_{\mathbf{y}_0}^{\mu} \text{ and } J_r = I_{\mathbf{y}_0}^{\mu^r} J_{r-1}, \text{ for } r = 2, \dots, n.$$
 (3)

Notice that the variety $V(J_r)$ represents all the states that are at most r-steps ways from \mathbf{y}_0 . It is easy to see that

$$J_1 \supset J_2 \supset \dots \supset J_r \supset J_{r+1} \supset \dots \tag{4}$$

Since \mathbb{K}^n is finite, the descending chain in Equation 4 stops at some index r = N. That is,

$$J_N = J_{N+1} = J_{N+2} = \cdots$$
 (5)

The following proposition uses equations 4-5 to establish a test for global reachability of the new attractor \mathbf{y}_0 .

Proposition 1.2. Let $y_0 \in \mathbb{K}^n$. Then y_0 is globally reachable if the chain in Equation 5 stops at the zero-ideal. That is,

$$J_N = J_{N+1} = \{0\}.$$
 (6)

Proof. It follows from the fact that $V(\{0\}) = \mathbb{K}^n$.

2 P53-mdm2 Network Polynomials

Consider the network at Figure 2 of the main text for the signaling pathway of p53 that was published in [1]. This is a discrete dynamical system $\mathbf{F} = (f_1, \ldots, f_{16}) : \mathbb{F}_2^{16} \to \mathbb{F}_2^{16}$ with 16 nodes and binary states $\mathbb{F}_2 = \{0, 1\}$. Let us represent the nodes by

$x_1 = ATM,$	$x_2 = p53,$
$x_3 = Mdm2,$	$x_4 = M dm X,$
$x_5 = Wip1,$	$x_6 = cyclinG,$
$x_7 = PTEN,$	$x_8 = p21,$
$x_9 = AKT,$	$x_{10} = cyclinE,$
$x_{11} = Rb,$	$x_{12} = E2F1,$
$x_{13} = p14ARf,$	$x_{14} = Bcl2,$
$x_{15} = Bax,$	$x_{16} = caspase.$

The polynomial functions for this network are given below. For the cancer cell model where PTEN and p14ARf are inactive (fixed to zero) and cyclinG is always active (fixed to 1) make the value of these variables equal to the corresponding constant.

```
f1 = 1 + x5 + x1^{*}x5 + x12^{*}x5 + x1^{*}x12^{*}x5 + x6 + x1^{*}x6 + x12^{*}x6 + x1^{*}x12^{*}x6 + x5^{*}x6,
   f2 = 1 + x3 + x1^{*}x2^{*}x3 + x4 + x1^{*}x4 + x3^{*}x4 + x1^{*}x3^{*}x4 + x1^{*}x2^{*}x3^{*}x4,
   \mathbf{f3} = 1 + \mathbf{x1} + \mathbf{x10} + \mathbf{x1} + \mathbf{x10} + \mathbf{x11} + \mathbf{x10} + \mathbf{x11} + \mathbf{x10} + \mathbf{x10} + \mathbf{x10} + \mathbf{x10} + \mathbf{x13} + \mathbf{x10} + \mathbf{x13} + \mathbf{x10} + \mathbf{x13} + \mathbf{x10} + 
   x1^{*}x10^{*}x13 + x11^{*}x13 + x1^{*}x11^{*}x13 + x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x1^{*}x2^{*}x3 + x10^{*}x2^{*}x3 + x10^{*}x2^{*}x3 + x10^{*}x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x1^{*}x10^{*}x11^{*}x13 + x10^{*}x11^{*}x13 + x10^{*}x11^{*}x13 + x10^{*}x10^{*}x11^{*}x13 + x10^{*}x10^{*}x10^{*}x11^{*}x13 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x1
   x11^{*}x2^{*}x3 + x1^{*}x10^{*}x11^{*}x2^{*}x3 + x1^{*}x13^{*}x2^{*}x3 + x10^{*}x13^{*}x2^{*}x3 + x11^{*}x13^{*}x2^{*}x3 + x10^{*}x13^{*}x2^{*}x3 + x10^{*}x13^{*}x3 + x10^{*}x13^{*}x13^{*}x3 + x10^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13
   x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3 + x1^{*}x4 + x10^{*}x4 + x11^{*}x4 + x1^{*}x10^{*}x11^{*}x4 + x1^{*}x13^{*}x4 + x10^{*}x13^{*}x4 + x10^{*}x13^{*}x14 + x10^{*}x
x11^*x13^*x4 + x1^*x10^*x11^*x13^*x4 + x13^*x2^*x4 + x1^*x13^*x2^*x4 + x10^*x13^*x2^*x4 + x10^*x2^*x4 +
   x1^{*}x10^{*}x13^{*}x2^{*}x4 + x11^{*}x13^{*}x2^{*}x4 + x1^{*}x11^{*}x13^{*}x2^{*}x4 + x10^{*}x11^{*}x13^{*}x2^{*}x4 + x10^{*}x11^{*}x13^{*}x13^{*}x13^{*}x13^{*}x14 + x10^{*}x11^{*}x13^{*}x13^{*}x14 + x10^{*}x11^{*}x13^{*}x14 + x10^{*}x11^{*}x13^{*}x14 + x10^{*}x11^{*}x13^{*}x14 + x10^{*}x14 + x10^{*}x11^{*}x13^{*}x14 + x10^{*}x14 + x1
   x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4 + x13^{*}x3^{*}x4 + x1^{*}x13^{*}x3^{*}x4 + x10^{*}x13^{*}x3^{*}x4 + x1^{*}x10^{*}x13^{*}x3^{*}x4 + x1^{*}x10^{*}x13^
   x1^{*}x2^{*}x3^{*}x4 + x10^{*}x2^{*}x3^{*}x4 + x1^{*}x10^{*}x2^{*}x3^{*}x4 + x11^{*}x2^{*}x3^{*}x4 + x1^{*}x11^{*}x2^{*}x3^{*}x4 + x1^{*}x10^{*}x2^{*}x3^{*}x4 + x1^{*}x10^{*}x10^{*}x4 + x1^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{
   x10^{*}x11^{*}x2^{*}x3^{*}x4+x13^{*}x2^{*}x3^{*}x4+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4+x1^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x10^{*}x5+x1
   x13^{*}x2^{*}x5 + x1^{*}x13^{*}x2^{*}x5 + x10^{*}x13^{*}x2^{*}x5 + x1^{*}x10^{*}x13^{*}x2^{*}x5 + x11^{*}x13^{*}x2^{*}x5 + x10^{*}x13^{*}x2^{*}x5 + x10^{*}x13^{*}x2^{*}x15 + x10^{*}x13^{*}x2^{*}x15 + x10^{*}x13^{*}x2^{*}x15 + x10^{*}x13^{*}x2^{
   x1^{*}x11^{*}x13^{*}x2^{*}x5 + x10^{*}x11^{*}x13^{*}x2^{*}x5 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x5 + x13^{*}x3^{*}x5 + x1^{*}x13^{*}x3^{*}x5 + x13^{*}x3^{*}x5 + x13^{*}x3^{
   x10^{*}x13^{*}x3^{*}x5 + x1^{*}x10^{*}x13^{*}x3^{*}x5 + x11^{*}x13^{*}x3^{*}x5 + x1^{*}x11^{*}x13^{*}x3^{*}x5 + x10^{*}x11^{*}x13^{*}x3^{*}x5 + x10^{*}x10^{*}x13^{*}x3^{*}x5 + x10^{*}x10^{*}x10^{*}x13^{*}x3^{*}x5 + x10^{*}x10^{*}x10^{*}x13^{*}x3^{*}x5 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10
   x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x5 + x1^{*}x2^{*}x3^{*}x5 + x10^{*}x2^{*}x3^{*}x5 + x1^{*}x10^{*}x2^{*}x3^{*}x5 + x11^{*}x2^{*}x3^{*}x5 + x10^{*}x2^{*}x3^{*}x5 + x10^{*}x2
   x1^{x}x11^{x}x2^{x}x3^{x}5+x10^{x}x11^{x}x2^{x}x3^{x}5+x13^{x}x2^{x}x3^{x}x5+x1^{x}x10^{x}x11^{x}x13^{x}x2^{x}x3^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4^{x}x5+x1^{x}x4x}x5+x1^{x}x4^{x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4^{x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1^{x}x4x}x5+x1
   x10^{*}x4^{*}x5 + x1^{*}x10^{*}x4^{*}x5 + x11^{*}x4^{*}x5 + x1^{*}x11^{*}x4^{*}x5 + x10^{*}x11^{*}x4^{*}x5 + x13^{*}x4^{*}x5 + x10^{*}x10^{*}x11^{*}x4^{*}x5 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x1
   x1^{x}10^{x}x11^{x}x13^{x}x4^{x}x5 + x1^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x11^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x2^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x13^{x}x4^{x}x5 + x10^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x
x1^{x}10^{x}x11^{x}x13^{x}x2^{x}x4^{x}5+x1^{x}x13^{x}x3^{x}x4^{x}5+x10^{x}x13^{x}x3^{x}x4^{x}5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x3^{x}x4^{x}x5+x10^{x}x13^{x}x13^{x}x4^{x}x5+x10^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x1
   x11^*x13^*x3^*x4^*x5 + x1^*x10^*x11^*x13^*x3^*x4^*x5 + x1^*x2^*x3^*x4^*x5 + x10^*x2^*x3^*x4^*x5 + x10^*x2^*x5 + x10^
x11^{*}x2^{*}x3^{*}x4^{*}x5 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5 + x1^{*}x2^{*}x6 + x10^{*}x2^{*}x6 + x11^{*}x2^{*}x6 + x10^{*}x2^{*}x6 + x10^{*}x10^{*}x2^{*}x6 + x10^{*}x16 + x10^{*}x16 + x10^{*}x16 + x10^{*}x16 
   x1^{*}x10^{*}x11^{*}x2^{*}x6 + x1^{*}x13^{*}x2^{*}x6 + x10^{*}x13^{*}x2^{*}x6 + x11^{*}x13^{*}x2^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x6 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x13^{*}x2^{*}x6 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x13^{*}x2^{*}x6 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x
   x1^{*}x3^{*}x6 + x10^{*}x3^{*}x6 + x11^{*}x3^{*}x6 + x1^{*}x10^{*}x11^{*}x3^{*}x6 + x1^{*}x13^{*}x3^{*}x6 + x10^{*}x13^{*}x3^{*}x6 + x10^{*}x13^
   x10^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x6 + x11^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x1
```

 $x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6 + x13^{*}x4^{*}x6 + x1^{*}x13^{*}x4^{*}x6 + x14^{*}x13^{*}x4^{*}x6 + x14^{*}x13^{*}x14^{*}x13^{*}x14^{*}x14 + x14^{*}x14^{*}x14 + x14^{*}x1$ x10*x13*x4*x6+x1*x10*x13*x4*x6+x11*x13*x4*x6+ $x1^{*}x11^{*}x13^{*}x4^{*}x6 + x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x2^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x2^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{$ $x10^{*}x2^{*}x4^{*}x6 + x1^{*}x10^{*}x2^{*}x4^{*}x6 + x11^{*}x2^{*}x4^{*}x6 + x1^{*}x11^{*}x2^{*}x4^{*}x6 + x10^{*}x11^{*}x2^{*}x4^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x4^{*}x6 + x10^{*}x11^{*}x11^{*}x11^{*}x2^{*}x4^{*}x6 + x10^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}$ x13*x2*x4*x6+x1*x10*x11*x13*x2*x4*x6+x1*x3*x4*x6+ $x10^{*}x3^{*}x4^{*}x6 + x1^{*}x10^{*}x3^{*}x4^{*}x6 + x11^{*}x3^{*}x4^{*}x6 + x1^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x10^{*}x11^{*}x3^{*}x4^{*}x6 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^$ $x13^{*}x3^{*}x4^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x3^{*}x4^{*}x6 + x1^{*}x13^{*}x3^{*}x4^{*}x$ $x10^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6+x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x13^{*}x5^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x15^{*}x6+x15^{*}x15^{*}x15^{*}x6+x15^{*}x15^{*}x6+x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x15^{*}x1$ $x1^{*}x13^{*}x5^{*}x6 + x10^{*}x13^{*}x5^{*}x6 + x1^{*}x10^{*}x13^{*}x5^{*}x6 + x11^{*}x13^{*}x5^{*}x6 + x1^{*}x11^{*}x13^{*}x5^{*}x6 + x1^{*}x11^{*}x13^{*}x5 + x1^{*}x11^{*}x13^{*}x5$ $x10^{*}x11^{*}x13^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x5^{*}x6+x1^{*}x2^{*}x5^{*}x6+x10^{*}x2^{*}x5^{*}x6+x1^{*}x10^{*}x2^{*}x5^{*}x6+x1^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^$ $x11^{*}x2^{*}x5^{*}x6 + x1^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x13^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x6 + x10^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}$ $x1^{x}10^{x}x11^{x}x13^{x}x2^{x}x5^{x}x6+x1^{x}x3^{x}x5^{x}x6+x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x3^{x}x5^{x}x6+x1^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x$ $x11^{*}x3^{*}x5^{*}x6 + x1^{*}x11^{*}x3^{*}x5^{*}x6 + x10^{*}x11^{*}x3^{*}x5^{*}x6 + x13^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x5^{*}x6 + x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x$ $x1^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x10^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x11^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x10^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x1$ $x1^{*}x13^{*}x4^{*}x5^{*}x6 + x10^{*}x13^{*}x4^{*}x5^{*}x6 + x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x13^{*}x4^{*}x5^{*}x6 + x1^{*}x10^{*}x10^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{$ x1*x2*x4*x5*x6+x10*x2*x4*x5*x6+x11*x2*x4*x5*x6+ $x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4^{*}x5^{*}x6+x1^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x11^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4^{*}x5^{*}x6+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x3^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x4+x10^{*}x10^{*}x4+x10^{*}x10^{*}x10+x10^{*}x10+x10^{*}x10+x10^{*}x10+x10^{*}$ $x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x4^{*}x5^{*}x6+x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6+x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x11^{*}x$ $x1^{*}x2^{*}x9 + x10^{*}x2^{*}x9 + x11^{*}x2^{*}x9 + x1^{*}x10^{*}x11^{*}x2^{*}x9 + x1^{*}x13^{*}x2^{*}x9 + x1^{*}x13^{*}x13^{*}x13^{*}x2^{*}x9 + x1^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x$ $x10^{*}x13^{*}x2^{*}x9 + x11^{*}x13^{*}x2^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x9 + x1^{*}x3^{*}x9 + x10^{*}x3^{*}x9 + x11^{*}x3^{*}x9 + x10^{*}x3^{*}x9 + x10^{*}x3^{*}$ $x1^{*}x10^{*}x11^{*}x3^{*}x9 + x1^{*}x13^{*}x3^{*}x9 + x10^{*}x13^{*}x3^{*}x9 + x11^{*}x13^{*}x3^{*}x9 + x10^{*}x13^{*}x3^{*}x9 + x10^{*}x13^{*}x3^{*}x13^{*}x13^{*}x3^{*}x19 + x10^{*}x13^{*}x3^{*}x9 + x10^{*}x13^{*}x3^{$ $x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x9 + x13^{*}x2^{*}x3^{*}x9 + x1^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x3 + x10^{*}x13^{*}x2^{*}x3^{*}x3 + x10^{*}x13^{*}x13^{*}x13^{*}x2^{*}x3^{*}x3 + x10^{*}x13^{*}x13^{*}x2^{*}x3^{*}x3 + x10^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^{*}x13^$ $x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x9 + x11^{*}x13^{*}x2^{*}x3^{*}x9 +$ $x1^{*}x11^{*}x13^{*}x2^{*}x3^{*}x9 + x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x9 +$ $x1^{x}10^{x}11^{x}13^{x}2^{x}3^{x}9+x13^{x}4^{x}9+x1^{x}13^{x}4^{4}x9+x10^{x}13^{x}4^{4}x9+x10^{x}13^{x}4^{x}x9+x10^{x}13^{x}4^{x}x9+x10^{x}13^{x}4^{x}x9+x10^{x}13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x4^{x}x9+x10^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x$ x1*x10*x13*x4*x9+x11*x13*x4*x9+ $x1^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x11^{*}x13^{*}x4^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x1^{*}x2^{*}x4^{*}x9 + x10^{*}x2^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x4^{*}x9 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{$ $x1^{*}x10^{*}x2^{*}x4^{*}x9 + x11^{*}x2^{*}x4^{*}x9 + x1^{*}x11^{*}x2^{*}x4^{*}x9 + x10^{*}x11^{*}x2^{*}x4^{*}x9 + x13^{*}x2^{*}x4^{*}x9 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x$ $x1^{x}10^{x}x11^{x}x13^{x}x2^{x}x4^{x}y+x1^{x}x3^{x}x4^{x}y+x10^{x}x3^{x}x4^{x}y+x1^{x}x10^{x}x3^{x}x4^{x}y+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x11^{x}x3^{x}x4^{x}x9+x1x}x4^{x}x9+x11^{x}x3$ x1*x13*x2*x3*x4*x9+x10*x13*x2*x3*x4*x9+x11*x13*x2*x3*x4*x9+ $x1^{x}10^{x}x11^{x}x13^{x}x2^{x}x3^{x}x4^{x}x9 + x13^{x}x5^{x}x9 + x1^{x}x13^{x}x5^{x}x9 + x10^{x}x13^{x}x5^{x}x9 + x1^{x}x10^{x}x13^{x}x5^{x}x9 + x1^{x}x10^{x}x10^{x}x13^{x}x5^{x}x9 + x1^{x}x10^{x}x13^{x}x5^{x}x9 + x1^{x}x10^{x}x13^{x}x5^{x}x9 + x1^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^$ $x11^{*}x13^{*}x5^{*}x9 + x1^{*}x11^{*}x13^{*}x5^{*}x9 + x10^{*}x11^{*}x13^{*}x5^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x5^{*}x9 + x1^{*}x2^{*}x5^{*}x9 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*$ $x10^{*}x2^{*}x5^{*}x9 + x1^{*}x10^{*}x2^{*}x5^{*}x9 + x11^{*}x2^{*}x5^{*}x9 + x1^{*}x11^{*}x2^{*}x5^{*}x9 + x10^{*}x11^{*}x2^{*}x5^{*}x9 + x10^{*}x11^{*}x11^{*}x2^{*}x5^{*}x9 + x10^{*}x11^{*}x11^{*}x11^{*}x2^{*}x5^{*}x9 + x10^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}x11^{*}$ $x13^{*}x2^{*}x5^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x5^{*}x9 + x1^{*}x3^{*}x5^{*}x9 + x10^{*}x3^{*}x5^{*}x9 + x1^{*}x10^{*}x3^{*}x5^{*}x9 + x1^{*}x10^{*}x10^{*}x3^{*}x5^{*}x9 + x1^{*}x10^{*}x3^{*}x5^{*}x9 + x1^{*}x10^{*}x10^{*}x10^{*}x3^{*}x5^{*}x9 + x1^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x$ x11*x3*x5*x9+x1*x11*x3*x5*x9+x10*x11*x3*x5*x9+x13*x3*x5*x9+ $x1^{x}10^{x}x11^{x}13^{x}x3^{x}x5^{x}y+x1^{x}13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}x5^{x}x5^{x}y+x10^{x}x13^{x}x2^{x}x3^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^{x}x5^$ $x11^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x1^{x}x10^{x}x11^{x}x13^{x}x2^{x}x3^{x}x5^{x}y+x1^{x}x13^{x}x4^{x}x5^{x}y+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x10^{x}x13^{x}x4^{x}x5^{x}x10^{x}x10^{x}x13^{x}x4^{x}x5^{x}x9+x10^{x}x10^{x}x13^{x}x4^{x}x5^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^$ $x11^{*}x2^{*}x4^{*}x5^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4^{*}x5^{*}x9 + x1^{*}x3^{*}x4^{*}x5^{*}x9 + x10^{*}x3^{*}x4^{*}x5^{*}x9 + x10^{*}x3^{*}x5$ $x11^{*}x3^{*}x4^{*}x5^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x3^{*}x4^{*}x5^{*}x9 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x9 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x9 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x9 + x13^{*}x3^{*}x4^{*}x5^{*}x9 + x13^{*}x3^{*}x4^{*}x5^{*}x$ $x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x9 + x1^{*}x6^{*}x9 + x10^{*}x6^{*}x9 + x11^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x11^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10$ $x1^{*}x13^{*}x6^{*}x9 + x10^{*}x13^{*}x6^{*}x9 + x11^{*}x13^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x6^{*}x9 + x13^{*}x2^{*}x6^{*}x9 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^$ $x1^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x1^{x}x10^{x}x13^{x}x2^{x}x6^{x}y+x11^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x13^{x}x2^{x}x6^{x}y+x10^{x}x13^{x}x13^{x}x13^{x}x13^{x}x10^{x}x13^{x}x10^{x}x13^{x}x13^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x1$ x1*x11*x13*x2*x6*x9+x10*x11*x13*x2*x6*x9+x1*x10*x11*x13*x2*x6*x9+x13*x3*x6*x9+ $x1^{*}x13^{*}x3^{*}x6^{*}x9 + x10^{*}x13^{*}x3^{*}x6^{*}x9 + x1^{*}x10^{*}x13^{*}x3^{*}x6^{*}x9 + x11^{*}x13^{*}x3^{*}x6^{*}x9 + x10^{*}x13^{*}x3^{*}x6^{*}x9 + x10^{*}x13^{*}x13^{*}x13$ $x1^{x}11^{x}13^{x}3^{x}3^{x}6^{x}9 + x10^{x}11^{x}x13^{x}3^{x}x6^{x}9 + x1^{x}10^{x}x11^{x}x13^{x}x3^{x}x6^{x}9 + x1^{x}10^{x}x11^{x}x13^{x}x3^{x}x6^{x}x9 + x1^{x}x10^{x}x11^{x}x13^{x}x3^{x}x6^{x}x9 + x1^{x}x10^{x}x10^{x}x11^{x}x10^{x}x11^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10^{x}x10$ $x1^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x2^{*}x3^{*}x6^{*}x9 + x1^{*}x10^{*}x2^{*}x3^{*}x6^{*}x9 + x11^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x2^{*}x8^{*}x6^{*}x8 + x10^{*}x8^{*}x8^{*}x8 + x10^{*}x8^{*}x8^{*}x8 + x10^{*}x8^{*}x8^{*}x8 + x10^{*}x8^{*}x8^{*}x8 + x10^{*}x8^{*}x8 + x10^{$ $x1^{*}x11^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x11^{*}x2^{*}x3^{*}x6^{*}x9 + x13^{*}x2^{*}x3^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x11^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x11^{*}x11^{*}x13^{*}x2^{*}x3^{*}x6^{*}x9 + x10^{*}x11^{*}x11^{*}x13^{*}x13^{*}x18^{*}x6^{*}x9 + x10^{*}x11^{*}x11^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{*}x18^{$ $x1^{*}x4^{*}x6^{*}x9 + x10^{*}x4^{*}x6^{*}x9 + x1^{*}x10^{*}x4^{*}x6^{*}x9 + x11^{*}x4^{*}x6^{*}x9 + x1^{*}x11^{*}x4^{*}x6^{*}x9 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x1$

```
x10^{*}x11^{*}x4^{*}x6^{*}x9 + x13^{*}x4^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x4^{*}x6^{*}x9 + x1^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x1^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x1^{*}x13^{*}x4^{*}x6^{*}x9 + x1^{*}x13^{*}x13^{*}x4^{*}x6^{*}x9 + x1^{*}x13^{*}x13^{*}x13^{*}x13^{*}x14^{*}x6^{*}x9 + x1^{*}x13^{*}x14^{*}x14^{*}x6^{*}x9 + x1^{*}x13^{*}x14^{*}x6^{*}x9 + x1^{*}x13^{*}x14^{*}x6^{*}x9 + x1^{*}x14^{*}x16^{*}x14^{*}x14^{*}x16^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x14^{*}x
  x10^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x11^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x10^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4^{*}x6^{*}x9 + x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}x10^{*}
x1*x10*x11*x13*x3*x4*x6*x9+x1*x2*x3*x4*x6*x9+x10*x2*x3*x4*x6*x9+
  x11^{*}x2^{*}x3^{*}x4^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x6^{*}x9 +
  x1^{*}x5^{*}x6^{*}x9 + x10^{*}x5^{*}x6^{*}x9 + x1^{*}x10^{*}x5^{*}x6^{*}x9 + x11^{*}x5^{*}x6^{*}x9 + x1^{*}x11^{*}x5^{*}x6^{*}x9 + x10^{*}x5^{*}x6^{*}x9 + x10^{*}x5^{*}x6^{*}x7 + x10^{*}x5^{*}x6^{*}x7 + x10^{*}x5^{*}x6^{*}x7 + x10^{*}x5^{*}x6^{*}x7 + x10^{*}x5^{*}x6^{
  x10^{*}x11^{*}x5^{*}x6^{*}x9 + x13^{*}x5^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x5^{*}x6^{*}x9 + x1^{*}x13^{*}x2^{*}x5^{*}x6^{*}x9 + x1^{*}x13^{*}x5^{*}x6^{*}x9 + x1^{*}x13^{*}x5^{*}x6^{*}x6^{*}x9 + x1^{*}x13^{*}x5^{*}x6^{*}x9 + x1^{*}x13^{*}
  x10*x13*x2*x5*x6*x9+x11*x13*x2*x5*x6*x9+x1*x10*x11*x13*x2*x5*x6*x9+
  x1*x13*x3*x5*x6*x9+x10*x13*x3*x5*x6*x9+x11*x13*x3*x5*x6*x9+
  x1*x10*x11*x13*x3*x5*x6*x9+x1*x2*x3*x5*x6*x9+x10*x2*x3*x5*x6*x9+
  x11^{*}x2^{*}x3^{*}x5^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x5^{*}x6^{*}x9 + x1^{*}x4^{*}x5^{*}x6^{*}x9 + x1^{*}x4^{*}x5^{*}x6^{*}x8 + x1^{*}x16^{*}x8 + x1^{*}x8 
  x13^{*}x2^{*}x4^{*}x5^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x13^{*}x2^{*}x4^{*}x5^{*}x6^{*}x9 + x13^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x13^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x9 + x13^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x
  x1^{x}10^{x}x11^{x}x13^{x}x3^{x}x4^{x}5^{x}x6^{x}y+x1^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}y+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}y+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}y+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x9+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x8+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x8+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x8+x10^{x}x2^{x}x3^{x}x4^{x}x5^{x}x6^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x10^{x}x8+x
  x1*x10*x2*x3*x4*x5*x6*x9+x11*x2*x3*x4*x5*x6*x9+x1*x11*x2*x3*x4*x5*x6*x9+
  x10^{*}x11^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x1^{*}x10^{*}x11^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x3^{*}x6^{*}x8 + x13^{*}x2^{*}x8^{*}x8 + x13^{*}x2^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x13^{*}x8^{*}x8 + x18^{*}x8 + x1
  x1^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x10^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x9 + x10^{*}x13^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x8^{*}x
  x1^{*}x10^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x9 + x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x9 + x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x6^{*}x9 + x11^{*}x13^{*}x4^{*}x5^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x6^{*}x
  x1^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9 + x10^{*}x11^{*}x13^{*}x2^{*}x3^{*}x4^{*}x5^{*}x6^{*}x9
     \mathbf{f4} = 1 + \mathbf{x1} + \mathbf{x13} + \mathbf{x1}^* \mathbf{x13} + \mathbf{x3} + \mathbf{x1}^* \mathbf{x3} + \mathbf{x13}^* \mathbf{x3} + \mathbf{x1}^* \mathbf{x13}^* \mathbf{x3} + \mathbf{x1}^* \mathbf{x4}^* \mathbf{x5} + \mathbf{x1}^* \mathbf{x13}^* \mathbf{x13}^* \mathbf{x4}^* \mathbf{x5} + \mathbf{x1}^* \mathbf{x13}^* \mathbf
  x1^{x}3^{x}x4^{x}5+x1^{x}13^{x}x3^{x}x4^{x}5+x1^{x}x9+x1^{x}x13^{x}x9+x1^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x3^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x9+x1^{x}x13^{x}x13^{x}x9+x1^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{x}x13^{
  x13^{*}x4^{*}x9 + x1^{*}x13^{*}x4^{*}x9 + x13^{*}x3^{*}x4^{*}x9 + x1^{*}x13^{*}x3^{*}x4^{*}x9 + x13^{*}x5^{*}x9 + x1^{*}x13^{*}x3^{*}x4^{*}x9 + x13^{*}x5^{*}x9 + x1^{*}x13^{*}x3^{*}x4^{*}x9 + x13^{*}x3^{*}x4^{*}x9 + x13^
  x1^{*}x13^{*}x5^{*}x9 + x13^{*}x3^{*}x5^{*}x9 + x1^{*}x13^{*}x3^{*}x5^{*}x9 + x1^{*}x4^{*}x5^{*}x9 + x1^{*}x4^{*}x5^{*}x8 + x1^{*}x4^{*}x5^{*}x8 + x1^{*}x4^{*
  x13^{*}x4^{*}x5^{*}x9 + x3^{*}x4^{*}x5^{*}x9 + x1^{*}x13^{*}x3^{*}x4^{*}x5^{*}x9
     f5 = x2.
     f6 = x2,
     f7 = x2,
     f8 = x2 + x2^*x3^*x9 + x2^*x3^*x8^*x9,
     f9 = 1 + x7,
  f10 = 1 + x8,
  \mathbf{f}11 = \mathbf{x}1 + \mathbf{x}11 + \mathbf{x}10^* \mathbf{x}11 + \mathbf{x}10^* \mathbf{x}11 + \mathbf{x}1^* \mathbf{x}16 + \mathbf{x}11^* \mathbf{x}16 + \mathbf{x}11^* \mathbf{x}16 + \mathbf{x}10^* \mathbf{x}10^* \mathbf{x}11^* \mathbf{x}16 + \mathbf{x}10^* \mathbf{x}10^* \mathbf{x}11^* \mathbf{x}16 + \mathbf{x}10^* \mathbf{x
  x1^{*}x10^{*}x11^{*}x16 + x1^{*}x10^{*}x3 + x11^{*}x3 + x1^{*}x11^{*}x3 + x10^{*}x11^{*}x3 + x1^{*}x10^{*}x16^{*}x3 + x11^{*}x16^{*}x3 + x11^{*}x16^{*}x16^{*}x3 + x11^{*}x16^{*}x16^{*}x16^{*}x16^{*}x16^{*}x16^{*}x16^{*}x
  x1*x11*x16*x3+x10*x11*x16*x3,
  f12 = 1 + x11 + x11 + x11 + x11 + x12 + x13 + x11 + x13 + x13 + x11 + x13 + x11 + x12 + x13 + x11 + x12 + x13 + x11 + x13 + x13 + x11 + x13 + x13 + x11 + x13 + 
  x1^{x}x11^{x}x12^{x}x13 + x11^{x}x3 + x1^{x}x11^{x}x3 + x11^{x}x12^{x}x3 + x1^{x}x11^{x}x12^{x}x3 + x11^{x}x13^{x}x3 + x11^{x}x13^{x}x13^{x}x3 + x11^{x}x13^{x}x3 + x11^{x}x13^{x}x3 + x11^{x}x13^{x}x3 +
  x1^{*}x11^{*}x13^{*}x3 + x1^{*}x12^{*}x13^{*}x3 + x11^{*}x12^{*}x13^{*}x3
     f13 = x12 + x13 + x12^{*}x13 + x12^{*}x2 + x13^{*}x2 + x12^{*}x13^{*}x2 + x12^{*}x5 + x13^{*}x5 + x1
  x12*x2*x5+x13*x2*x5,
     f14 = x14 + x14 + x16 + x14 + x2 + x14 + x16 + x2 + x9 + x14 + x9 + x14 + x16 + x9 + x2 + x9,
  f15 = x2 + x14^*x2 + x14^*x15^*x2,
  f16 = x15 + x12^{*}x16 + x12^{*}x16 + x12^{*}x15 + x15^{*}x16 + x12^{*}x14^{*}x15^{*}x16 + x14^{*}x15^{*}x8 + x16^{*}x16 + x12^{*}x16 + x12^{*}x16
  x12^{*}x14^{*}x15^{*}x8 + x12^{*}x16^{*}x8 + x12^{*}x14^{*}x16^{*}x8 + x12^{*}x15^{*}x16^{*}x8 + x12^{*}x16^{*}x8 + x12^{*}x1
  x14*x15*x16*x8+x14*x15*x9+x12*x14*x15*x9+x12*x16*x9+
  x12*x14*x16*x9+x12*x15*x16*x9+x14*x15*x16*x9+
```

```
x15^{*}x8^{*}x9 + x12^{*}x15^{*}x8^{*}x9 + x12^{*}x14^{*}x15^{*}x8^{*}x9 + x12^{*}x16^{*}x8^{*}x9 + x12^{*}x16^{*}x8^{*
```

```
x12^{*}x14^{*}x16^{*}x8^{*}x9 + x15^{*}x16^{*}x8^{*}x9 + x14^{*}x15^{*}x16^{*}x8^{*}x9 + x12^{*}x14^{*}x15^{*}x16^{*}x8^{*}x9 + x12^{*}x16^{*}x8^{*}x9 + x12^{*}x16^{*}x8
```

3 P53-mdm2 network control combinations

Here we list the top 10 controllers for the cancer cell model where PTEN and p14ARf are inactive (fixed to zero) and cyclinG is always active (fixed to 1), see Table 5 of [1].

The 10 control sets that give the largest basin for \mathbf{y}_0 are given in Table 1 and the 10 control sets that give the smallest basin for \mathbf{y}_0 are in Table 2. For each solution, the edges that are crossed-out (in red) are edges that become nonessential after the other controllers in the set have been applied.

Sets	Controllers	Basin $\%$
1	$p53 \rightarrow Wip1, Mdm2 \rightarrow p21, Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	60.815
2	$p53 \rightarrow Wip1, Mdm2 \rightarrow p21, \frac{p53 \rightarrow p53}{p53}, Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	60.815
3	$p53 \rightarrow Wip1, \frac{p21 \rightarrow p21}{p21}, Mdm2 \rightarrow p21, Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	60.815
4	$p53 \rightarrow Wip1, p21 \rightarrow p21, Mdm2 \rightarrow p21, p53 \rightarrow p53, Mdm2 \rightarrow p53,$	60.815
	$p21 \rightarrow Caspase.$	00.010
5	$p53 \rightarrow Wip1, ATM \rightarrow Rb, Mdm2 \rightarrow p21, Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	60.815
6	$p53 \rightarrow Wip1, ATM \rightarrow Rb, Mdm2 \rightarrow p21, p53 \rightarrow p53, Mdm2 \rightarrow p53, p21 \rightarrow Caspase,$	60.815
	$p21 \rightarrow Caspase.$	00.010
7	$p53 \rightarrow Wip1, ATM \rightarrow Rb, \frac{p21 \rightarrow p21}{p21}, Mdm2 \rightarrow p21, Mdm2 \rightarrow p53,$	60.815
	$p21 \rightarrow Caspase.$	00.010
8	$p53 \rightarrow Wip1, ATM \rightarrow Rb, \frac{p21 \rightarrow p21}{p21}, Mdm2 \rightarrow p21, \frac{p53 \rightarrow p53}{p53},$	60.815
	$Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	00.815
9	$p53 \rightarrow Wip1, Caspase \rightarrow Rb, ATM \rightarrow Rb, Mdm2 \rightarrow p21, Mdm2 \rightarrow p53,$	60.815
	$p21 \rightarrow Caspase.$	00.815
10	$p53 \rightarrow Wip1, Caspase \rightarrow Rb, ATM \rightarrow Rb, Mdm2 \rightarrow p21, p53 \rightarrow p53,$	60.815
	$Mdm2 \rightarrow p53, p21 \rightarrow Caspase.$	00.010

Table 1: Control sets that give the largest basin for \mathbf{y}_0 .

C-+-	Controllor	D = = :== 07
Sets	Controllers	Basin %
936	$p53 \rightarrow Wip1, Mdm2 \rightarrow p21, ATM \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.42725
937	$p53 \rightarrow Wip1, p21 \rightarrow p21, Mdm2 \rightarrow p21, ATM \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.42725
938	$p53 \rightarrow Wip1, ATM \rightarrow Rb, Mdm2 \rightarrow p53, ATM \rightarrow p53, E2F1 \rightarrow ATM,$	0.41504
	$E2F1 \rightarrow Caspase.$	
939	$p53 \rightarrow Wip1, ATM \rightarrow Rb, \frac{p53 \rightarrow p53}{p53}, Mdm2 \rightarrow p53, \frac{ATM \rightarrow p53}{p53},$	0.41504
	$E2F1 \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.41004
940	$p53 \rightarrow Wip1, Caspase \rightarrow Rb, ATM \rightarrow Rb, ATM \rightarrow ATM,$	0.41504
	$E2F1 \rightarrow Caspase.$	0.41004
941	$p53 \rightarrow Wip1, Caspase \rightarrow Rb, ATM \rightarrow Rb, Mdm2 \rightarrow p53, ATM \rightarrow p53,$	0.41504
	$E2F1 \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.41004
942	$p53 \rightarrow Wip1, Caspase \rightarrow Rb, ATM \rightarrow Rb, \frac{p53 \rightarrow p53}{p53}, Mdm2 \rightarrow p53, \frac{ATM \rightarrow p53}{p53}, \frac{ATM \rightarrow p53}{p53}$	0.41504
	$E2F1 \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.41004
943	$p53 \rightarrow Wip1, ATM \rightarrow ATM, E2F1 \rightarrow Caspase,$	0.3418
944	$p53 \rightarrow Wip1, Mdm2 \rightarrow p53, ATM \rightarrow p53, E2F1 \rightarrow ATM, E2F1 \rightarrow Caspase,$	0.31738
945	$p53 \rightarrow Wip1, p53 \rightarrow p53, Mdm2 \rightarrow p53, ATM \rightarrow p53, E2F1 \rightarrow ATM, E2F1 \rightarrow Caspase.$	0.31738

Table 2: Control sets that give the smallest basin for \mathbf{y}_0 .

4 T-LGL network

Here we show details of the computation of the control targets shown in Eq. 13 (main text) and Table 2 (main text).

First, we consider the polynomials $g_i := (u_i^- + u_i^+ + 1)f_i(x) + u_i^+ - x_i$. We are interested in the solutions of the system of 18 equations $g_1 = 0, \ldots, g_{16} = 0, x_{16} = 0, x_{10} = 0$. Since the combination of node deletion and constant expression of the same node is not biologically relevant, we require that at least one of the control parameters u_i^+ , u_i^- is zero; that is, we require $u_i^- u_i^+ = 0$. The algebraic representation of the solutions is then encoded as the ideal of polynomials $I = \langle g_1, g_2, \ldots, g_{16}, x_{10}, u_1^- u_1^+, u_2^- u_2^+, \ldots, u_{16}^- u_{16}^+ \rangle$.

Using the algebra software Macaulay2, we find that the Gröbner basis in lexicographical order of this ideal is

 $\begin{array}{l} G = \{u_{10}^+, \ u_{16}^+, \ (u_{10}^-+1)u_9^+, \ (u_{10}^-+1)(u_9^-+1)u_8^+, \ (u_{10}^-+1)(u_{13}^++1)u_{12}^+, \ u_{15}^-(u_{10}^-+1)(u_9^-+1)(u_{10}^-+1)(u_{10}^-+1)(u_{10}^-+1)(u_{10}^-+1)(u_{13}^-+1)(u_{13}^-+1)(u_{13}^-+1)(u_{10}^-+1)(u_{13}^-+1)(u_{10}^-+1)(u_{13}^-+1)(u_{10}^-+(u_{10}^-+u_{10}^-+u_{10}^-+(u_{10}^-+u_{10}^-+u_{10}^-+u_{10}^-+u_{10}$

The polynomials not shown in the list above consist of polynomials that contain variables x_i 's, or polynomials of the form $u_i^+u_i^-$, which give no new information. We make two important remarks. First, the list of polynomials in G encode the same solutions as the ideal I. Thus, if we can choose parameters such that the system of equations defined by G has no solution, then the original system will have no solutions. Second, the polynomials shown above depend only on the control parameters. Thus, for appropriate choices of u_i^+ and u_i^- , we can make one of such polynomials equal to 1 (e.g. for $u_{10}^+ = 1$), which guarantees that the original system has no solutions regardless of the value of the variables x.

Then, the control policies that we obtain are the following:

1. $u_{16}^+ = 1$, no restriction on other controls

- 2. $u_{10}^+ = 1$, no restriction on other controls
- 3. $u_{10}^- = 0, u_9^+ = 1$, no restriction on other controls
- 4. $u_{10}^- = 0, u_9^- = 0, u_8^+ = 1$, no restriction on other controls
- 5. $u_{10}^- = 0, u_{13}^+ = 0, u_{12}^+ = 1$, no restriction on other controls
- 6. $u_{15}^- = 1, u_{10}^- = 0, u_9^- = 0, u_8^- = 0, u_6^- = 0, u_7^+ = 0$, no restriction on other controls
- 7. $u_{14}^- = 1, u_{12}^- = 0, u_{10}^- = 0, u_{13}^+ = 0$, no restriction on other controls
- 8. $u_{11}^- = 1, u_{10}^- = 0, u_9^- = 0, u_6^+ = 1$, no restriction on other controls

9. $u_{11}^- = 1, u_{10}^- = 0, u_9^- = 0, u_7^- = 1, u_6^- = 0$, no restriction on other controls

10. $u_{13}^- = 1, u_{10}^- = 0, u_{12}^+ = 1$, no restriction on other controls

- 11. $u_{15}^- = 1, u_{11}^- = 1, u_{10}^- = 0, u_{9}^- = 0, u_{6}^- = 0, u_{7}^+ = 0$, no restriction on other controls
- 12. $u_{15}^- = 1, u_{10}^- = 0, u_9^- = 0, u_8^- = 0, u_7^- = 1, u_6^- = 0$, no restriction on other controls

13. $u_{15}^- = 1, u_{10}^- = 0, u_9^- = 0, u_8^- = 0, u_6^+ = 1$, no restriction on other controls

14. $u_{14}^- = 1, u_{13}^- = 1, u_{12}^- = 0, u_{10}^- = 0$, no restriction on other controls

Note that some control policies are better than others. For example, control policy 5 needs only one active control $(u_{12}^+ = 1, \text{ all the others can be zero})$, but control policy 10 requires 2 active controls $(u_{12}^+ = 1, u_{12}^+ = 1)$ and $u_{13}^- = 1$. By inspection, we see that the best control policies are the following:

1. $u_{16}^+ = 1$, all other controls equal to zero

- 2. $u_{10}^+ = 1$, all other controls equal to zero
- 3. $u_9^+ = 1$, all other controls equal to zero
- 4. $u_8^+ = 1$, all other controls equal to zero
- 5. $u_{12}^+ = 1$, all other controls equal to zero
- 6. $u_{15}^- = 1$, all other controls equal to zero
- 7. $u_{14}^- = 1$, all other controls equal to zero
- 8. $u_{11}^{-} = 1, u_{6}^{+} = 1$, all other controls equal to zero
- 9. $u_{11}^- = 1, u_7^- = 1$, all other controls equal to zero

These are the controls reported in Table 2 (main text). Note that control $u_{16}^+ = 1$ corresponds to the constant expression of the conceptual node x_{16} =Apoptosis, so it is not explicitly reported.

References

- [1] M. CHOI, J. SHI, S. H. JUNG, X. CHEN, AND K.-H. CHO, Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to dna damage, Sci. Signal., 5 (2012), p. ra83.
- [2] R. LI, M. YANG, AND T. CHU, Controllability and observability of boolean networks arising from biology, Chaos, 25 (2015), p. 023104.