Supplemental Information for:

Adenosine-to-insoine RNA editing by ADAR1 is essential for normal murine erythropoiesis

Brian J Liddicoat^{1,2}, Jochen C Hartner^{3,4}, Robert Piskol⁵, Gokul Ramaswami⁵, Alistair M Chalk^{1,2}, Paul D Kingsley⁶, Vijay G Sankaran⁴, Meaghan Wall⁷, Louise E Purton^{1,2}, Peter H Seeburg⁸, James Palis⁶, Stuart H Orkin^{4,9}, Jun Lu¹⁰, Jin Billy Li⁵ & Carl R Walkley^{1,2}*

¹St. Vincent's Institute of Medical Research, Fitzroy, Vic, 3065 Australia.

²Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, 3065 Australia.

³Taconic Biosciences, Cologne, 51063 Germany.

⁴Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115 USA.

⁵Department of Genetics, Stanford University, Stanford, CA, 94305 USA.

⁶Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA.

⁷Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Vic, 3065 Australia.

⁸Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, D-69120, Germany.

⁹Howard Hughes Medical Institute, Boston, MA, 02115 USA.

¹⁰Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT, 06520, USA.

*Correspondence should be addressed to: Carl Walkley St Vincent's Institute 9 Princes St Fitzroy 3065 Victoria Australia T: 61 3 9231 2480 F: 61 3 9416 2676 Email: cwalkley@svi.edu.au

Running Title: ADAR1 is essential for erythropoiesis

Key words: ADAR1, erythropoiesis, RNA editing, dsRNA, retrotransposons, microRNA

Figure S1. Erythroid-specific ablation of Adar1 causes embryonic death.

A) Schematic diagram of erythroid-specific deletion of *Adar1* with *Rosa26*eYFP reporter labeling of Cre-recombinase activity. **B**) Image of *Epor-Adar1* Δ /- neonate that survived 1 day postpartum and *Epor-Adar1* Δ /+ littermate control. **C**) Proportion of Sca1+ erythroblasts from *Epor-Adar1* Δ /- and *Epor-Adar1* Δ /+ E14.5 FL. Results are mean±SEM (Δ /+ n=14 and Δ /- n=18). ***p<0.0005 compared to Δ /+. Representative genotyping images from *Epor*-Cre (**D**) or *Lysm*-Cre (**E**) animals demonstrating activity of Cre in the lineage of interest.

Figure S2. No thrombocytopenia or leukopenia in Epor-Adar1 Δ /- recipients Peripheral blood counts of A) leukocytes and B) Platelets in *Epor-Adar1* Δ /+ (Δ /+) and *Epor-Adar1* Δ /- (Δ /-)FL transplant recipients. Results are mean±SEM (Δ /+, n=4 and Δ /-, n=7).

Figure S3. Absence of interferon signaling partially rescues *Adar1-^{-/-}* mice

A) Representative images of embryo proper (top) and FL (bottom) at E14.5. Genotypes indicated. Scale bar: 1cm for yolk sac and embryo, 4mm for FL. **B-D)** FL analysis at E14.5. All embryos are *lfnar^{/-}lfngr^{/-}* and *Adar1* genotype is indicated. **B)** Total viable (7AAD⁻) FL cellularity. Enumeration of **C)** erythrocytes and **D)** HSPCs. Results are mean±SEM (+/+ n=4, +/- n=8 and -/- n=4).

Figure S4. Very little RNA editing differences of known editing sites between diverse cell types

Hematopoietic fractions were isolated from 3 independent wild-type mice. 664 A-to-I editing sites (edited at >1% frequency and coverage >100 reads) were identified by mmP-CR-seq. Colored squares denote total editing frequency correlation between samples, from which hierarchical clustering was based upon. Correlations and statistics were determined by two-tailed Pearson correlation coefficients, p<0.05. Inc-Tbccd1-IT1 Figure S5. RNA secondary structure of Inc-Tbccd1-IT1 Predicted secondary structure of non-edited (genomic encoded sequence) of Inc-Tbccd1-IT1. Length of defined dsRNA duplex regions are represented as the number of nucleotide bases in the duplex and the number of A-to-I editing sites in each respective duplexes are defined (determined from editing analysis, but not depicted). Free energy state of predicted structure is depicted as dG.

dG = -578.60

396bp duplex 44 A-to-I sites

Reticulocytes were iso od, using so urring definitive fetal reti All primitive stages were purified using surface expression of Ter119 as well as utilizing a DNA intercolater (Draq5 or Vybrant Violet, VV) and a stain for RNA (Thiazok Orange, TO).

Definitive

Fetal definitive erythroid cells are produced asynchronously and cells were isolated from E14.5 fetal liver, except for reticulocytes isolated from E15.5 peripheral blood Bone marrow-derived adult definitive ervthroid cells also are pro ously and were isolated from mature female bone marrow

re staged by surface phenotype, as v on and RNA content and size

In pr e, the more co d DNA/l wer RNA containing definitiv d a single fi and named it PolyO

Figure S6. Expression of hyper-edited genes and MDA5 in erythropoiesis

A) Overview of cell-type fractions. B) Expression of hyper-edited genes (*Klf*1, Optn and Oip5) and MDA5. See http://www.cbil.upenn.edu/ErythronDB/home.jsp for details.