- SUPPLEMENTARY INFORMATION -

Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

Rafael **Gonçalves-Araujo**^{1,2,3}*, Mats A. **Granskog**⁴, Astrid **Bracher**^{1,5}, Kumiko **Azetsu-Scott**⁶, Paul A. **Dodd**⁴, and Colin A. **Stedmon**³**

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Climate Sciences Division, Physical Oceanography of Polar Seas, Bussestraße 24, 27570 Bremerhaven, Germany

²University of Bremen, Faculty of Biology and Chemistry (FB2) - PO Box 330440, 28334 Bremen, Germany

³Technical University of Denmark, National Institute for Aquatic Resources, Section for Marine Ecology and Oceanography, Kavalergården 6, 2920 Charlottenlund, Denmark

⁴Norwegian Polar Institute, Fram Centre, Postbox 6606 Langnes, 9296 Tromsø, Norway

⁵University of Bremen, Institute of Environmental Physics, PO Box 330440, 28334 Bremen, Germany

⁶Fisheries and Ocean, Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia, BY2 4A2 Canada

*Corresponding author: rafael.goncalves.araujo@awi.de - rafaelgoncalvesaraujo@gmail.com **Corresponding author: cost@aqua.dtu.dk

2

Table S1. Water masses classification. Thermohaline ranges used to

Water Mass	Temperature	Salinity
Atlantic Water (AW)	> 3 °C	> 34.9
Arctic Surface Water (ASW)	>0 °C	< 34.4
	> 2 °C	< 34.9
Polar Water (PW)	< 0 °C	< 34.4
Upper Arctic Intermediate Water (uAIW)	< 2 °C	34.4–34.9
Lower Arctic Intermediate Water (IAIW)	0–3 °C	> 34.9
Norwegian Sea Deep Water (NSDW)	< 0 °C	> 34.9

characterize the water masses in the Fram Strait and east Greenland ^{22,34}.

Figure S1. Water fractionation. (a) Phosphate (μ M) vs. nitrate (μ M) with the equations and source lines for the Atlantic and Pacific waters ¹⁷. (b) Salinity vs. δ^{18} O (‰) with the end members for Atlantic Water (AW), Meteoric Water (MW) and Seaice melt (SIM) and corresponding conservative mixing lines ¹⁷.

Figure S2. Vertical distribution of Chlorophyll-a and UV-FDOM for the

EGC2012 cruise. Vertical distribution of (**a**) chlorophyll-a fluorescence (A.U.) and (**b**) C3 (R.U.) for the EGC2012 cruise, and (c) the correlation between chlorophyll-a fluorescence (A.U.) and C3 (R.U.).

Figure S3. Scatter plots each of the cruises performed in the eastern

Greenland, considering only PW and ASW (salinity<34.3). (top panel) C1 (R.U.) vs. δ^{18} O (‰) vs. f_{sim} . (middle panel) C1 (R.U.) vs. f_{mw} vs. f_{sim} . (bottom panel) C1 (R.U.) vs. f_{sim} vs. salinity.

Figure S4. Vertical distribution of UV-fluorescent C3 (R.U.) along the

transects. (a) Fram2012, (b) Fram2013 and (c) Davis2013. Note the differences in color bar ranges for the cruises. Produced with Ocean Data View ⁶⁰.

