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Supplementary Methods  

Energy absorption of elastomer lattices. As shown in Supplementary Fig. 16, with increasing 

compressive strains, elastomer lattices undergo three stages: first a linear elastic region up to ~10% strain, 

and then a plateau region with stagnant or slowly increasing stress levels, followed by a densification 

region with a rapid increase of stress. The energy absorption efficiency of an elastomer lattice is defined 

as (shown in Supplementary Fig. 16AC) 
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where,  is the compressive strain, s is the nominal stress in a function of compression strain  , D is 

the densification strain that denotes a initial strain for the densification stage, and   Dtr ss  0max

is the maximum transmitted stress.  

In the practical calculations, the densification strain D  is unknown; therefore, we first sort out 

the energy absorption efficiency through increasing applied strain  . i.e.,  
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where    0max sstr  is the maximum transmitted stress. It is noted that trs  is not necessarily 

equal to s (see a case in the inset of Supplementary Fig. 16C). Then, the energy absorption efficiencies 
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 shown in Fig. 4I are the maximum 1 values across all applied strains (the maximum points in 

Supplementary Fig. 16BD). The densification strain is the strain corresponding to the maximum 1  

value (Supplementary Fig. 16BD). Calculation examples are shown in Supplementary Figs. 13 and 16.  
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Supplementary figures and captions 

 

Supplementary Figure 1. 3D printing process via projection microstereolithography. A CAD model 

is first sliced into a sequence of images. These 2D slice images, illuminated with UV/blue light from a 

light emitting diode, are sequentially projected onto a transparent window. On the window, the liquid 

photoresin, capped into a prescribed height by a printing stage, is cured by the light and attached onto the 

printing stage. As the printing stage is lifted off, the fresh resin is delivered beneath the printing stage by a 

rotational wheel. By lowering down the stage by a prescribed height and illuminating the resin with a 

subsequent slice image, a new layer can be printed and bonded onto the former layer.  
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Supplementary Figure 2. Hollow scaffolds for fabricating elastomer lattices for (A) compressive tests 

and (B) tensile tests.  
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Supplementary Figure 3. CAD models and fabricated samples of unit cells of (A) Octet, (B) Kelvin, (C) 

Kagome, (D) Octahedron and (E) Dodecahedron lattices. All scale bars denote 1 mm.  
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Supplementary Figure 4. Fabricated Octet lattice with Urethane elastomer. Scale bar denotes 2 mm.  
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Supplementary Figure 5. A Kelvin elastomer lattice can be reversibly compressed by 98% strain. The 

scale bars denote 2 mm.  
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Supplementary Figure 6. Nominal stresses of the elastomer solid (Mold max NV14 A:B=10:1) under 

tensile and compressive strains. The compressive strains and stresses are denoted as negative. The 

experimental curve is fitted to Arruda-Boyce model shown in Eq. 2 with the shear modulus of the 

elastomer solid as µ0=71 kPa and λm=2.91.  
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Supplementary Figure 7. Finite element simulated configurations of (A) Kelvin and (B) Octet elastomer 

lattices under increasing tensile strains, respectively.  
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Supplementary Figure 8. (A) CAD models of Kelvin lattices with various relative densities. (B) 

Simulated and fitted nominal stresses of Kelvin elastomer lattices with various relative densities in 

functions of tensile strains. The Simulated stress-strain curves are fitted to the Arruda-Boyce model 
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shown in Eq. 2 to obtain the effective shear modulus. (C) The fitted shear moduli of the Kelvin lattices 

plotted in a linear relationship with relative densities. With the similar method shown in (A-C), the shear 

moduli of (D) Octet, (E) Octahedron and (f) Dodecahedron lattices can also be calculated as linear 

relationships with their relative densities.  
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Supplementary Figure 9. Experimentally measured and finite-element simulated relative shear modulus 

of Octahedron and Dodecahedron elastomer lattices in functions of their relative densities.  
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Supplementary Figure 10. Fractured samples of (A) Octet, (B) Kelvin, (C) Octahedron, (D) Kagome 

and (E) Dodecahedron lattices after extreme tensions (see example in Supplementary Movie 1). All 

scale bars denote 2 mm.  
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Supplementary Figure 11. Nominal stresses of a Kelvin elastomer lattice under cyclic tensile strains.  
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Supplementary Figure 12. (A) Nominal stresses of an elastomer foam in a function of the tensile strains 

under loading rate is 0.0167mm/s. (B) Sequential images (i-vi) of the elastomer foam under large-strain 

tension denoted in (A). Cracks can be easily initiated from weak beams (biii-iv). The scale bar denotes 4 

mm.  
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Supplementary Figure 13. (A, C) Nominal stresses and (B, D) calculated energy absorption efficiencies 

of (A, B) Dodecahedron and (C, D) Octahedron elastomeric lattices plotted with increasing compressive 

strains with loading rate 0.0167mm/s. The energy absorption efficiencies shown in Fig. 4I are the values 

marked with circles in (B) and (D). The densification strains are shown by the dash lines in (B) and (D).  
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Supplementary Figure 14. Comparison of (A) experimentally observed and (B) finite-element simulated 

configurations of the Kelvin elastomer lattice under increasing compressive strains.  The scale bar in (A) 

denotes 2 mm.  
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Supplementary Figure 15. Comparison of (A) experimentally observed and (B) numerically simulated 

configurations of the Octet elastomer lattice under increasing compressive strains. For simplicity, we only 

consider the top layer frame of the Octet lattice in the finite-element simulations (B). The scale bar in (A) 

denotes 2 mm. 
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Supplementary Figure 16. (A, C) Nominal stresses and (B, D) calculated energy absorption efficiencies 

of (A, B) Kelvin and (C, D) Octet elastomer lattices in functions of compressive strains with loading rate 

0.0167mm/s. The energy absorption efficiencies in (B) and (D) are calculated via trssd /
0
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(see Eq. S2), where  is the increasing strain,  s is the nominal stress, and    0max sstr  is the 

maximum transmitted stress. It is noted that trs  is not necessarily equal to s (see a case in the inset of C). 

The energy absorption efficiencies shown in Fig. 4I are the values marked with circles in (B) and (D). 

The densification strains are shown by the dash lines in (B) and (D).  
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Supplementary Figure 17. Energy absorption efficiencies of Octet elastomer lattices, Kelvin elastomer 

lattices and elastomer foams with relative density ρ/ρ0~14%. The loading rate is 0.0167mm/s.   
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Supplementary Figure 18. Nominal stresses of (A, B) Kelvin and (C, D) Octet elastomer lattices with 

increasing compressive strains under loading rates (A, C) 0.83 mm/s and (B, D) 3.33 mm/s, respectively. 

(E) Energy absorption efficiencies of Octet elastomer lattices, Kelvin elastomer lattices and elastomer 

foams under loading rates 0.83 mm/s and 3.33 mm/s, respectively.  

 

  



22 
 

 

Supplementary Figure 19. (A) Nominal stresses of an elastomer foam (ρ/ρ0~26%) in a function of the 

compressive strains under loading rate is 0.0167 mm/s. The inset shows the fabricated elastomer foam. (B) 

Sequential images (i-iv) of the elastomer foam under large-strain compressions denoted in (A). The scale 

bar denotes 2 mm.  
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Supplementary Figure 20. Nominal stresses of (A) Kelvin and (B) Octet elastomer lattices under cyclic 

compressive strains.  
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Supplementary Figure 21. Schematic to show an elastomer lattice bonded between two HDDA lattices 

via thin layers of super glue.   
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Supplementary Figure 22. (A) The fabricated plastic semi-spherical shell (0.16 g) can sustain the 36 g 

weight without fracture. (B-E) damping experiments using (B) elastomer lattice, (C) elastomer solid, (D) 

plastic lattice and (E) elastomer foam as dampers, respectively. All scale bars denote 2 mm. 
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Supplementary Figure 23. Damping experiments on (A) cubic and (B) cylindrical shells using elastomer 

lattices, elastomer solids, plastic lattices and elastomer foams as dampers, respectively. All scale bars 

denote 2 mm.  
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Supplementary Figure 24. (A, D) CAD models and (B, E) fabricated elastomer lattice structures with (C) 

gradient rigidity and (F) homogeneous rigidity, respectively. Scale bars in (B) and (E) denote 4 mm. The 

modulus distribution along the path marked in (B) and (E) for (C) gradient and (F) homogeneous cases, 

respectively. The shear modulus is calculated by µ/µ0=0.49ρ/ρ0.  
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Supplementary Figure 25. (A) A hollow CAD model for fabricating a hollow Octahedron elastomer 

lattice. The internal yellow beams are designed to create the hollow channels within the elastomer lattices. 

(B) An electric circuit to demonstrate the conductivity of the elastomer lattice. (C) Resistances of path 1-2 

and path 3-4 in the elastomer lattice (shown in Fig. 5Di) in functions of nominal stresses applied on the 

lattice. Using the curve in (C), the stretchable conductor can act as a stress/force sensor.  
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Supplementary movie captions 

Supplementary Movie 1: A Kelvin elastomer lattice is under cyclic tensions. The strain history is from 0 

increasing to 4.14, then back to 0, and increasing to 4.5. The loading and unloading rate is 0.0167 mm/s. 

The movie speed is 115 times of the real speed.   

Supplementary Movie 2: A Kelvin elastomer lattice is under cyclic compression within strain 0-0.9. The 

loading and unloading rate is 0.0167 mm/s. The movie speed is 20 times of the real speed.  

Supplementary Movie 3: An Octet elastomer lattice is under cyclic compression within strain 0-0.9. The 

loading and unloading rate is 0.0167 mm/s. The movie speed is 20 times of the real speed. 

Supplementary Movie 4: A metal weight (36 g) is freely dropped from 100 mm height onto thin half-

spherical HDDA shells protected by an elastomer lattice, an elastomer solid cubic, an HDDA lattice and 

an elastomer foam, respectively.     

Supplementary Movie 5: A cylindrical elastomer-lattice structure is worn by a bending finger.   

Supplementary Movie 6: An elastomer lattice with conductive channels is cyclically stretched within 

strain 0-2.5. The conductive path is connected to the electric circuit as shown in Supplementary Fig. 24B 

to light up an LED.    
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