SUPPLEMENTARY INFORMATION

Endothelial Antioxidant-1: a Key Mediator of Copper-dependent Wound Healing *in vivo*

Archita Das¹, Sudhahar Varadarajan^{1,2}, Gin-Fu Chen¹, Ha Won Kim¹, Seock-Won Youn³, Lydia Finney⁴, Stefan Vogt⁴, Jay Yang⁵, Junghun Kweon^{1,2+}, Bayasgalan Surenkhuu^{1,2}, Masuko Ushio-Fukai³, Tohru Fukai^{1,2}

From ¹Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL60612

²Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612

³Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL60612

⁴Argone National Laboratory, IL60439

⁵Department of Anesthesiology, University of Wisconsin, Madison, WI 53792

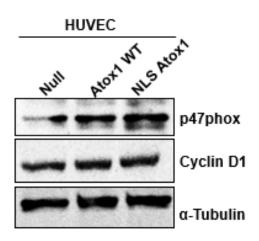
Short running title: Endothelial Atox1 and wound healing

Address correspondence to:

Tohru Fukai, M.D., Ph.D.

Depts. of Medicine (Section of Cardiology) and Pharmacology,

Center for Cardiovascular Research, University of Illinois at Chicago,


835 S. Wolcott, M/C868

E403 MSB

Chicago, IL60612

Phone: 312-996-7631 (office)

Fax: 312-996-1225 Email: tfukai@uic.edu

Supplemental Figure 1. Nuclear-targeted Atox1 increases expression of Atox1 target proteins (p47phox and cyclin D1) in ECs. HUVECs infected with adenovirus expressing Atox1-WT or Atox1 with nuclear-target sequence (Atox1-NLS) were used to measure p47phox, cyclin D1, or α -tubulin (loading control) protein expression using western analysis.