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Supplementary Methods 

Structure-based feature generation 

In addition to the novel features derived from the Delaunay triangulation and Laplacian 

characterization of protein structures, conventional structure-based attributes, including solvent 

accessibility, depth and protrusion indices, pocket information, secondary structure, hydrogen 

bonds, and B-factor, were also used in the current study. 

 

Residue solvent accessibility 

 Accessible surface area is the exposed region of a molecule that is accessible to solvents. 

The NACCESS program1 was utilized to calculate the solvent accessibility of each residue, 

which includes the absolute and relative accessible surface areas of total atoms, total side-chain 

atoms, nonpolar side-chain atoms, polar side-chain atoms, and total main-chain atoms. 

 

Depth and protrusion indices 

 Depth and protrusion indices are geometric features that describe the local concavity and 

convexity of a given protein structure, respectively. We used the PSAIA software2 with default 

parameters to generate the average depth and protrusion indices of all atoms in each residue. 

 

Pocket information 

 Catalytic residues generally locate in the pocket or cleft regions in enzyme structures. We 

thus detected all pockets in the query using the Fpocket2 program3. The location of each residue 

was then divided into four categories, including the largest pocket, the second or third largest 

pocket, the fourth to ninth largest pocket, and none of the above pockets. 

 

Secondary structure 

 Secondary structure can be utilized to reflect the local conformation of protein structures. 

The secondary structure of each residue was assigned by the DSSP program4. Residues in H (α-

helix), G (3/10-helix), and I (π-helix) are considered to be in helical conformation, and those in 

E (β-strand) and B (β-bridge) are in sheet conformation. All remaining residues are in coil 

conformation. 

 

Hydrogen bonds 

 Hydrogen bonds play important roles in maintaining the conformation of catalytic residues 

serving as donors or acceptors. We calculated hydrogen bonds using HBPLUS5 and achieved 

three features including the number of hydrogen bonds between side-chain atoms in query 

residue and other atoms in a protein, the number of hydrogen bonds between main-chain atoms 

in query residue and other atoms, and the number of hydrogen bonds including any atom in 

query residue. 

 

B-factor 

 B-factor, also called temperature factor, is a measure of atomic thermal motion and disorder. 

In this work, we used the B-factor of alpha carbon to represent the flexibility of each residue. 
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Sequence-based feature generation 

 As the complements of structure-based features, we extracted a variety of sequence-based 

descriptors to characterize each residue, such as residue type, position-specific scoring matrix, 

residue conservation scores, predicted structural features, physicochemical properties, catalytic 

residue propensity, sequential position, and global sequence features. 

 

Residue type 

 The identity of each residue can be used to check its catalytic signature. Each sequence 

position was thus encoded by a vector composed of 20 elements where the target residue type 

was set to 1 and the remainder was set to 0. 

 

Position-specific scoring matrix (PSSM) 

 PSSM is a sequence profile comprising the evolutionary information of a protein sequence. 

For each query, we performed a search against NR database from NCBI using the PSI-BLAST 

program6 with the parameters j = 3 and e = 0.001 to generate this profile. 

 

Residue conservation scores 

 In addition to PSSM, the conservation scores of each residue can also be used to measure 

its evolutionary signatures. Here we implemented five entropy-based scores proposed by Capra 

and Singh7, such as Shannon entropy8, property entropy9,10, von Neumann entropy11, relative 

entropy12, and Jensen-Shannon divergence7. These features were generated based on the 

weighted observed percentages matrix output by PSI-BLAST. 

 

Predicted structural features 

 Predicted structural features can offer useful information in the absence of native structures. 

We generated the predicted secondary structure, solvent accessible surface area, and backbone 

dihedral angles by SPINEX13 and extracted the predicted disorder score by SPINED14. 

 

Physicochemical properties 

 The physicochemical attributes of each residue can affect its catalytic performance. In this 

work, we retrieved nine amino acid indices from the AAindex database15, including number of 

atoms, number of electrostatic charge, number of potential hydrogen bonds, hydrophobicity, 

hydrophilicity, isoelectric point, mass, expected number of contacts within 14Å sphere, and 

electron-ion interaction potential, to reflect the specific nature of each residue type. 

 

Catalytic residue propensity 

 It is well known that residues have different tendency to be involved in catalytic activity.  

We thus calculated the catalytic residue propensity of each residue type which is defined as the 

ratio between the amino acid frequency in catalytic residues and that in the whole sequence. 

 

Sequential position 

 Sequential position can reflect the relative location of each residue in a given sequence. To 

this end, we extracted two features proposed by Chen et al.16, including terminus indicator and 

secondary structure segment indicators. The former is used to check whether a residue locates 
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in the N- or C-terminus, whereas the latter checks whether a predicted helix or sheet segment 

exists in the neighborhood of a given residue. More details can be found in the original reference. 

 

Global sequence features 

 The global information of a given sequence was captured by two features, including the 

sequence length and the amino acid composition of each sequence. 

 

Dataset preparation 

Primary dataset 

We used the dataset collected by Han et al.17, composed of 223 enzymes (CSA223), as the 

primary dataset to construct and evaluate our method. All entries in CSA223 were extracted 

from the SCOP database18 and their structures cover the four major structural classes (i.e., all-

α, all-β, α+β, α/β). The sequence identity of any chain pair is less than 30%. Catalytic residues 

were collected from scientific literatures in the Catalytic Site Atlas. We finally attained 630 

catalytic residues in this non-redundant dataset and the remaining 60658 residues were 

considered as non-catalytic residues. 

 

Alternative datasets 

Besides the CSA223 dataset, we further checked the robustness of our method using other 

well-established datasets, including EF_family, EF_superfamily, and EF_fold from Youn et al.19, 

HA_superfamily from Chea et al.20, NN from Gutteridge et al.21, and PC from Petrova and Wu22. 

These datatsets were non-redundant at different structural levels. For instance, the entries of EF 

series were from the representative families, superfamilies, and folds in terms of the SCOP 

classification. 

 

Independent test datasets 

The T124 dataset curated by Zhang et al.23 was applied to independent testing in our work. 

All these 124 entries came from the HA_superfamily dataset and shared less than 30% sequence 

identity with any chain from the EF_fold dataset serving as the training set. In addition to the 

native structures of these enzymes, we also attempted to estimate whether our algorithm can be 

applicable to the predicted structures. To this end, we prepared another two datasets T124_M90 

and T124_M30, in which the structures were modelled by the I-TASSER software24 with 

relaxed and stringent sequence identity cutoffs (90% and 30%), respectively. Structural model 

having the best C-score was chosen as a representative for each entry. The mean RMSD 

between the native structures and high quality models (T124_M90) is 1.86Å, while the value 

between the native structures and low quality models (T124_M30) is 2.48Å, suggesting that the 

quality of predicted structures is generally accepted. 

 

Structural genomics dataset 

We also built a structural genomics targets dataset called SG2332 which was selected from 

the Oct 2015 PDB release. We first searched the classification keyword ‘structural genomics’ 

in the PDB database and attained 2577 PDB entries having structural information but without 

functional annotations. The retrieved entries were then split into 5505 individual chains, which 

were further clustered at a 90% sequence identity cutoff using the CD-HIT program25. We 
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randomly selected one representative from each cluster and finally achieved 2332 chains. 

 

Performance evaluation 

To make a direct comparison with existing methods, we evaluated our predictors using 5-

fold cross-validation on the primary dataset (CSA223) and 10-fold cross-validation on the 

alternative datasets (e.g., EF_family, EF_superfamily, etc.), respectively. For conducting n-fold 

cross-validation, the target dataset was first separated into n subsets with an equal number of 

chains. Then one subset was used as the test set, while the rest was used as the training set. This 

procedure was repeated n times, in which each subset was tested in turn, to estimate the average 

performance. All parameters in our algorithm were determined using 5-fold cross-validation on 

CSA223. Moreover, the native and predicted structures in T124 were considered as the external 

data to assess our predictors trained on the EF_fold and CSA223 datasets. As a primary measure 

of prediction performance, the area under the receiver operating characteristic curve (AUC) 

was calculated. We also computed other well-established metrics including recall, precision, 

F1-score, accuracy (ACC), and Matthews correlation coefficient (MCC) as below. TP, TN, FP, 

and FN denote the numbers of true positives, true negatives, false positives, and false negatives, 

respectively. 

TP
Recall =

TP+ FN

TP
Precision =

TP+ FP

2 Recall Precision
F1-score =

Recall Precision

TP+ TN
Accuracy =

TP+ FN+ TN+ FP

TP TN- FP FN
MCC =

(TP+ FN)(TP+ FP)(TN+ FP)(TN+ FN)

 



 

 

Additionally, we provided the standard error (SE) for all measures used in this work. For 

the 5-fold cross-validation (CSA223), the SE was estimated based on the performance of the 

five subsets. For the independent testing (T124), the bootstrapping algorithm was applied to the 

estimation of SE. We randomly selected (with replacement) a set of 124 chains from the T124 

dataset and repeated this procedure 100 times. The SE was then estimated using the results of 

these bootstrap datasets. 
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Supplementary Figures and Tables 

 

Figure S1. Selection of the optimal parameter for residue microenvironment. We utilized the 

number of shared facets in residue pairs as a constraint to generate different microenvironments 

for each residue. When the number is no less than 9, both DT-based MEscore and closeness 

yield optimal performance. Note that the catalytic function of a query residue was identified if 

its attribute value is larger than a given cutoff. 

 

 

Figure S2. A comparison of the distribution of Laplacian norms by systematical sampling of 

different scale factors. The distribution on the last four scales (2-2, 2-1, 3/4, 1) proposed by Li et 

al.26 looks very similar. We thus selected five representative scalar factors with an increased 

distribution discrepancy, which might contribute to more multifaceted LN features. 
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Figure S3. Selection of the optimal parameters for our hybrid algorithm. In the heat maps, the 

color is changed according to the AUC value of our structural or sequence prediction module 

with different parameter combinations (orange/yellow/cyan = high/medium/low), and the black 

dot denotes the highest AUC value. 

 

 

 

 

Figure S4. Performance of DT- and distance-based microenvironment score and topological 

features. Distance-based method was implemented based on Han et al.17. CL: closeness, DG: 

degree, BW: betweenness, CC: clustering coefficient, and ME: microenvironment score. 
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Figure S5. Venn diagram of true positives output by our proposed predictors. The total numbers 

of true positives (positives) of StrFeature, SeqFeature, StrTemplate, SeqTemplate, StrHunter, 

SeqHunter, and CRHunter are 347 (1768), 343 (1713), 151 (452), 134 (273), 358 (1487), 348 

(1575), and 364 (1220), respectively. Obviously, CRHunter has considerable overlap with other 

predictors, suggesting that our hybrid algorithm effectively utilizes various catalytic signatures 

output by our structural and sequence prediction modules and by their component predictors. 

 

 
Figure S6. Prediction results for structural genomics targets (SG2332). (A) Distribution of 

predicted catalytic residues by chains. (B) Amino acid distribution of catalytic and all residues 

for the CSA223 and SG2332 datasets. CRs denotes catalytic residues, and ARs denotes all 

residues. 
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Figure S7. A snapshot of prediction results from our server. As shown in this figure, the results 

will be displayed from four perspectives. The first section provides summary information about 

the query protein and its optimal template. The second section shows graphical representation 

of prediction results, in which STRscore, SEQscore, and COMscore denote the prediction 

scores output by our structure-based module, sequence-based module, and integrative algorithm, 

respectively. The third section provides three-dimensional visualization of prediction results, in 

which the putative catalytic residues are highlighted in red sticks. The last section includes the 

details about prediction results, such as the outputs from our different predictors.  
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Table S1. Performance of proposed predictors without novel features 

Methodsa Recall Precision F1 ACC MCC AUC 

StrFeature 0.553 0.200 0.292 0.972 0.320 0.952 

StrFeature-ML 0.544 0.200 0.290 0.972 0.317 0.949 

StrFeature-MTL 0.489 0.181 0.263 0.972 0.285 0.941 

SeqStrFeature 0.577 0.251 0.349 0.978 0.370 0.960 

SeqStrFeature-ML 0.566 0.250 0.346 0.978 0.366 0.959 

SeqStrFeature-MTL 0.533 0.241 0.331 0.978 0.348 0.956 

StrHunter 0.568 0.247 0.342 0.977 0.364 0.958 

StrHunter-ML 0.549 0.236 0.328 0.977 0.349 0.956 

StrHunter-MTL 0.538 0.237 0.327 0.977 0.346 0.950 

CRHunter 0.579 0.302 0.396 0.982 0.409 0.967 

CRHunter-ML 0.569 0.297 0.390 0.982 0.402 0.966 

CRHunter-MTL 0.568 0.295 0.388 0.982 0.401 0.963 
a Annotations of different methods are the same as those in Table 1. Predictor-ML denotes the predictor without the Microenvironment score and Laplacian norms. 

Predictor-MTL denotes the predictor without the Microenvironment score, Topological features, and Laplacian norms. 

 

Table S2. Performance of proposed predictors on independent datasets (trained on CSA223) 

a High and low quality models denote the structures modelled by I-TASSER with relaxed and strict sequence identity cutoffs (90% and 30%), respectively. 
b Annotations of different methods are the same as those in Table 1. 

  

Data typea Methodb Recall Precision F1 ACC MCC AUC 

Native sequence SeqFeature 0.422  0.165  0.237  0.978  0.254  0.926  

 SeqTemplate 0.156  0.411  0.226  0.992  0.250  N/A 

 SeqHunter 0.430  0.169  0.242  0.979  0.260  0.927  

Native structure StrFeature 0.528  0.182  0.271  0.977  0.301  0.943  

 StrTemplate 0.161  0.257  0.198  0.990  0.199  N/A 

 StrHunter 0.509  0.184  0.271  0.978  0.298  0.942  

 CRHunter 0.451  0.214  0.290  0.982  0.303  0.946  

High quality model StrFeature 0.504  0.166  0.250  0.976  0.280  0.931  

 StrTemplate 0.166  0.279  0.208  0.990  0.210  N/A 

 StrHunter 0.486  0.163  0.244  0.976  0.272  0.932  

 CRHunter 0.446  0.217  0.292  0.983  0.303  0.942  

Low quality model StrFeature 0.427  0.140  0.211  0.974  0.234  0.916  

 StrTemplate 0.129  0.223  0.164  0.990  0.165  N/A 

 StrHunter 0.417  0.140  0.209  0.975  0.231  0.918  

 CRHunter 0.430  0.211  0.283  0.983  0.294  0.937  
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Table S3. Comparison with other prediction methods 

Methoda 
Reported EF EF EF HA 

PC T124 
measureb family superfamily fold superfamily 

CRpredc Recall(Precision) 0.583(0.186) 0.521(0.170) 0.482(0.170) 0.540(0.149) 0.537(0.175) 0.501(0.147) 

CatANalystd Recall(Precision) 0.613(0.205) 0.662(0.239) 0.646(0.241) 0.674(0.210) 0.697(0.225) 0.548(0.155) 

SeqHunter Recall(Precision) 0.612(0.207) 0.514(0.168) 0.431(0.160) 0.642(0.178) 0.360(0.143) 0.565(0.185) 

CRHunter Recall(Precision) 0.710(0.262) 0.686(0.219) 0.627(0.213) 0.732(0.242) 0.668(0.221) 0.715(0.286) 

a SeqHunter is the combination of our sequence-based feature and template methods. CRHunter is our final prediction algorithm. 
b Recall (precision) values of CatANalyst, SeqHunter, and CRHunter are reported when their precision (recall) values are equal to those of CRpred. 
c Results on the above six datasets reported from Zhang et al.23. 
d Results on the above six datasets reported from Cilia and Passerini27. 
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