

Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures

Yu Lu, Guangqing Du, Feng Chen*, Qing Yang*, Yan Ou, Jiale Yong and Xun Hou

Figure. S1. The displacements for the maximum trapping force changing with incident wavelength (\blacktriangle) and magnitude of the corresponding force (\triangledown). The laser influence is 4×10^8 W/m² and the geometry parameters of the bowtie nanoaperture and particle are what applied in figure.2 in the manuscript.

Figure S2. The wavelength dependent potential well depth with different bowtie nano-aperture sizes of A, B and C. A represents the parameters applied in **figure.1 (b)** in manuscript. B represents the size 1.15 times as that applied in **figure.1 (b)** and C represents the size 1.3 times as that applied in **figure.1 (b)**. The laser influence is 4×10^8 W/m² and the diameter of nanoparticle is 50 nm.

Figure S3. Wavelength dependent half width for half maximum (HWHM) potential well with different diameters of nanoparticles of 35 nm (\blacksquare), 45 nm (\blacksquare), 50 nm (\blacktriangle) and 55 nm (\blacktriangledown). The laser fluence applied in this figure is $4 \times 10^8 \text{ W/m}^2$