

Supplementary Figure 1: Additional characterization of nucleosome positioning. (a) Sequence-based prediction of nucleosome positions for the promoters of *Cga* and *Lhb*. (b) High-coverage nucleosome maps were carried out in MEF cells, as in Fig 1c, and data is presented and analyzed similarly, n = 3-4. (c) Typical MNase digestion of genomic DNA of different cells used in the MNase experiments under the same conditions. Digested genomic DNA of L β T2 and MEFs was purified and run on a 2% agarose gel.

Supplementary Figure 2: Integrity of histones, nucleosomes and single-molecule optical-tweezers constructs. (a) Recombinant histories were expressed in bacteria separately as (H2A/H2B)₂ or (H2A.Z/H2B)₂ dimers and (H3/H4)₄ tetramers, mixed in a 2:1 (dimer:tetramer) molar ratio for reconstitution by salt gradient dialysis and run on 12.5% SDS-PAGE. Note that the H2A.Z band can be readily discriminated from that of H2A. Octamers purified from gonadotrope cells were used as a positive control. (b) Typical nucleosome reconstitution used for optical-tweezers experiments. DNA (221 bp for 601; 160 bp for *Lhb* and *Cga* constructs) was titrated with increasing amounts of histones for each reconstitution reaction. All the reconstitutions were performed at the same conditions and 1/8 of each reconstitution reaction was run on a 1% agarose gel post-stained with EtBr. "N" stands for naked DNA – with no histones. Three bands are seen in the gels, with intensities that vary depending on the concentration of histones used for the reconstitution: Naked DNA (NAK), nucleosomes (NUC), and a lower mobility product (LMP) that appears at high histone concentrations. We attribute this band to non-specific binding of histones to DNA, as indicated by their mobility and by their inability to efficiently ligate to the dsDNA handles, which suggests that the restrictions sites are covered by histones. To improve the purity of our nucleosomes, we chose samples (indicated by the red arrows) at an octamer concentration below the one that resulted in the nucleosome's band peak intensity. In this way, while we had a significant fraction of naked DNA (which can be easily identified in the optical tweezers), we had practically no traces with non-specific histone binding to DNA.

Extension (nm)

Supplementary Figure 3: Additional characterization of reconstituted nucleosomes. (a) Nucleosomes reconstituted on 601 DNA (upper panel) and *Lhb* TSS (lower panel) were subjected to Dynamic Light Scattering analysis. Measured hydrodynamic diameters were 10.7 ± 1.2 nm and 10.3 ± 1.4 nm (mean $\pm 90\%$ C.I.), for 601 DNA and *Lhb* TSS, respectively. (b) A total of ~2.5 pmol of each reconstituted nucleosome was subjected to 20 gel units of MNase for 10 min at 37°C in reaction buffer. The DNA was purified using a PCR purification kit. The reaction products were run on a 2.5% agarose gel. UC = nondigested naked DNA construct, NK = digested naked DNA, NC = digested nucleosomes. (c) Reconstituted nucleosomes were ligated to dsDNA handles with a terminal digoxigenin, incubated with beads coated with antibodies against digoxigenin, pulled-down, and the supernatant was run on 1% agarose post stained with EtBr. H = dsDNA handles; L =ligation of handles and construct; PD = pull-down. (d) Ligation products were used as templates for a qPCR reaction, using a forward primer located in the dsDNA handle, and a reverse primer located in the reconstitution template. The results were normalized to the mean of the results obtained with naked DNA. NAK = naked DNA; NUC = nucleosome sample; LMP = sample at high octamer loading, with high concentration of LMP. The efficiency of ligation is 2.1-fold higher for NUC-rich samples as compared to LMP-rich samples ($p=9x10^{-4}$, two-sample Student's t-test.). (e) Reconstituted nucleosomes were ligated at both ends to ~600 bp dsDNA handles that allow to apply a stretching force on the construct. (f) Force-extension curves for 601 (green) and *Lhb* TSS (green) nucleosomes reveal the typical low-force opening of the outer turn, and high-force opening of the inner turn.

Supplementary Figure 4: Single-molecule unzipping curves. Unzipping traces for all of the nucleosomes measured (colored lines) together with a typical unzipping trace of their respective naked DNA (black). n= 88, 27, 28, 34, 7, 8, 37, 38, 27, 28. Total=322.

Supplementary Figure 5: Reverse unzipping curves. Representative unzipping traces for Cga +1 nucleosomes, ligated to the DNA handles in the reverse orientation. n=27, 28.

Supplementary Figure 6: Chd1 is not located on the *Lhb* promoter. ChIP for Chd1 was carried out in L β T2 cells expressing both *Cga* and *Lhb*. ChIP data is analyzed and presented as in Fig. 1d. Data are shown as mean \pm SEM, n = 3.

Supplementary Figure 7: H2A.Z effect on the nucleosome's position. Region 2 position for nucleosomes reconstituted with H2A (solid bars) and H2A.Z (dashed bars). Data shown as mean \pm SEM, n \geq 34; For *Lhb* TSS, p=0.02; Kolmogorov-Smirnov test. *p<0.05.

Number of	Amplicon center	Primer	Primer sequence $(5' \rightarrow 3')$		
amplicon	(relative to TSS)				
1	470	<i>Cga</i> -525F	CACACCTGGACATATCTACTGT		
	-470	<i>Cga</i> -425R	AATTGCTCCAATTTCTTAAATTAAC		
C	270	<i>Cga</i> -429F	GGAGCAATTGTTTTATTTTTCTGT		
2	-379	<i>Cga</i> -329R	ATTAGCTAAGTACCTGATATTTTCA		
2	201	<i>Cga</i> -334F	GCTAATTAAATGTGCTACTCTTAG		
3	-204	<i>Cga</i> -235R	GGCCATTTTCTATGTAATATTATTG		
4	100	<i>Cga</i> -238F	GGCCAAATGCTCTCTCTCA		
4	-188	<i>Cga</i> -139R	TTGATCATATCACATTGCAACCC		
5	04	<i>Cga</i> -144F	GATCAATTGATGTCATGGTAATT		
5	-94	<i>Cga</i> -45R	AATTGCATGTTCCCAGCTG		
(. 1	<i>Cga</i> -50F	GCAATTTGTATTACTCTGCTGGT		
0	+1	<i>Cga</i> +50R	GATTGTCGATCTGAGGGGAA		
7	07	<i>Cga</i> +47F	GTGGTCACAAATATTTTACTCTTT		
/	+97	<i>Cga</i> +147R	ATCACCTGCCCAGAACAC		
0	+192	<i>Cga</i> +142F	CCACAGGAAACAATTTTCTGCATA		
8		<i>Cga</i> +242R	ACAGACCTCCCTCCAACTCA		
1	469	<i>Lhb</i> -518F	GACACACCCCTTACTTCCAGAG		
1	-408	Lhb -419R	GGATGCCTGGATTGGGTCCAA		
2	272	<i>Lhb</i> -422F	ATCCTGATTAGGGGGCTGGGAG		
	-372	<i>Lhb</i> -323R	GGCACAGCTTCAACCTTAGGTT		
2	272	<i>Lhb</i> -323F	CCTCCTATTTAGTTGTACCCAACCA		
3	-275	<i>Lhb</i> -224R	TAAAGGGGAGGCCACTGCAG		
4	-183	<i>Lhb</i> -233F	CTCCCCTTTACCTTGTTTCCCGT		
4		<i>Lhb</i> -134R	CAGGGACTAGCTCCAGTGTC		
5	80	<i>Lhb</i> -139F	TCCCTGGCTTCCCTGACCTTG		
5	-89	<i>Lhb</i> -40R	TGGGGGTGGCAAGGCCACTA		
6	. 0	<i>Lhb</i> -42F	CCACAACCCGCAGGTATAA		
	+8	<i>Lhb</i> +58R	GATTGGGAAGTACCCTGGG		
7	105	<i>Lhb</i> +55F	AATCCCACCAAACCCATAGATG		
/	+105	<i>Lhb</i> +154R	GTTTATCTCCTGTTTGAAGTCCAC		
0	+200	<i>Lhb</i> +150F	TAAACAGATTTCATGGCTGGTGATG		
8		<i>Lhb</i> +249R	TCTACCCCTGACCTGGTTTTTC		

Supplementary Table 1: Primers used for low-coverage MNase- and ChIP-qPCR

Number of	Amplicon center	Primer	Primer sequence $(5' \rightarrow 3')$		
amplicon	(relative to TSS)				
1	-65	<i>Cga</i> -100F	TGGGTAGAATTTACCCCTGATCC		
		<i>Cga</i> -31R	CAGCAGAGTAATACAAATTGCAT		
2	40	<i>Cga</i> -83F	TGATCCCTGAGCTTATGTGC		
2	-47	<i>Cga</i> -14R	CCCACTGTCTTTTATACCAG		
2	26	<i>Cga</i> -61F	CTGGGAACATGCAATTTGTA		
3	-20	Cga +8R	GTGCCTGCAGTTAATAAAGTCT		
4	2	<i>Cga</i> -39F	ACTCTGCTGGTATAAAAGACAG		
4	-2	<i>Cga</i> +34R	GGGGAACAATGTCTCTGGATT		
5	L 1 <i>4</i>	<i>Cga</i> -20F	CAGTGGGAGACTTTATTAACTGC		
3	+14	<i>Cga</i> +48R	GATTGTCGATCTGAGGGGAAC		
(126	Cga -1F	CTGCAGGCACTGAAAAATCCA		
0	+30	<i>Cga</i> +72R	TTGAGGGATGTGTTCTGGGCA		
7	. 5.4	<i>Cga</i> +19F	AGAGACATTGTTCCCCTCAG		
/	+34	<i>Cga</i> +88R	CCTACCTCTGGACTTTTTGAG		
0	+75	<i>Cga</i> +39F	ATCGACAATCACCTGCCCAG		
8		<i>Cga</i> +111R	CCCCCAAATGATTTCATCATATTACC		
9	102	<i>Cga</i> +56F	CAGAACACATCCCTCAAAAAG		
	+92	<i>Cga</i> +127R	CTCTTTAATTAAATCCCCCCAA		
10	+ 1 1 1	<i>Cga</i> +76F	GTCCAGAGGTAGGTAATATGATG		
10	111	<i>Cga</i> +146R	TGTGGTCACAAATATTTTACTC		
11	⊥12 2	<i>Cga</i> +97F	TGAAATCATTTGGGGGGGATT		
11	+132	<i>Cga</i> +166R	TTATGCAGAAAATTCTTTCCTGT		
12	+159	<i>Cga</i> +124F	AGAGTAAAATATTTGTGACCACAG		
12		<i>Cga</i> +194R	GAATGCCTAATTATTTTCCTACC		
12	170	<i>Cga</i> +143F	CACAGGAAAGAATTTTCTGCA		
13	+1/8	<i>Cga</i> +214R	GCACCATAAAGAAAATTAATGAATGCC		
14	105	<i>Cga</i> +160F	TGCATAAATGTTGGTAGGAAAATAATTAGGC		
	+195	<i>Cga</i> +230R	TCCAACTCAGCCATGAGCAC		
1.5	1200	<i>Cga</i> +172F	GGTAGGAAAATAATTAGGCATTCATT		
15	+209	<i>Cga</i> +245R	TTCTACAGACCTCCCTCCAA		
17	+231	<i>Cga</i> +196F	TTAATTTTCTTTATGGTGCTCATGG		
16		<i>Cga</i> +265R	ACGATTGCCTTAGCTTACAG		

Supplementary Table 2: Primers used for high-coverage MNase-qPCR

Number of amplicon	Amplicon center (relative to TSS)	Primer	Primer sequence $(5' \rightarrow 3')$		
1	-138	<i>Lhb</i> -173F	TGAGGCCAATTCACTGGGACAC		
1		<i>Lhb</i> -103R	TTGGGGGGCGAGACACAGACAA		
2	117	<i>Lhb</i> -152F	ACTGGAGCTAGTCCCTGGCTT		
	-117	<i>Lhb</i> -81R	GGTAACCTAGACACTAATCTCTT		
2	-96	<i>Lhb</i> -130F	TCCCTGACCTTGTCTGTGTC		
3		<i>Lhb</i> -61R	AAGTAGTGGCTACAGGCTTGG		
		<i>Lhb</i> -111F	CGCCCCCAAAGAGATTAGTGT		
4	-///	<i>Lhb</i> -42R	TGGGGGTGGCAAGGCCACTA		
5	-57	<i>Lhb</i> -94F	GTGTCTAGGTTACCCAAGCCT		
5		<i>Lhb</i> -23R	GCTTTATACCTGCGGGTTGT		
(4.4	<i>Lhb</i> -79F	AAGCCTGTAGCCACTACTTAG		
6	-44	Lhb -9R	ACCTTGGGCACCTGGCTTTA		
7	-23	<i>Lhb</i> -58F	TGGCCTTGCCACCCCACAA		
/		<i>Lhb</i> +12R	CTCCATTCTTGATACCTTCCC		
0	1	<i>Lhb</i> -36F	CGCAGGTATAAAGCCAGGTGC		
8	-1	<i>Lhb</i> +34R	TGGGCCCTACCATCTTACCT		
0	+19	<i>Lhb</i> -17F	CCCAAGGTAGGGAAGGTATCA		
9		<i>Lhb</i> +54R	ATTGGGAAGTACCCTGGGC		
10	⊥51	<i>Lhb</i> +16F	GAGGCTCCAGGTAAGATGGT		
10	+31	<i>Lhb</i> +86R	AAGGCTGTCCATCTATGGGT		
11	+71	<i>Lhb</i> +36F	AGGGCCCAGGGTACTTCCCA		
11		<i>Lhb</i> +106R	TCCTCCAACCCCCAGGTCAC		
12	+01	<i>Lhb</i> +56F	ATCCCACCAAACCCATAGAT		
12	+91	<i>Lhb</i> +126R	AGGAGACCCCCTCCTCTC		
12	+111	<i>Lhb</i> +75F	TGGACAGCCTTGTGACCT		
15		<i>Lhb</i> +146R	TGTTTGAAGTCCACCAGCT		
1.4	+130	<i>Lhb</i> +92F	TGGGGGTTGGAGGAGGGA		
14		<i>Lhb</i> +167R	CCATGAAATCTGTTTATCTCCTG		
15	+144	<i>Lhb</i> +109F	AGAGGAGGGGGGTCTCCTA		
15		<i>Lhb</i> +179R	GACCCATCACCAGCCATGA		
16	+162	<i>Lhb</i> +127F	GCTGGTGGACTTCAAACAG		
10	+102	<i>Lhb</i> +197R	ACAGAAACTGTCCTTCAAGAC		
17	+180	<i>Lhb</i> +145F	GGAGATAAACAGATTTCATGGC		
17		<i>Lhb</i> +215R	GCACCCACTCAGTATAATACA		
18	+202	<i>Lhb</i> +167F	TGGTGATGGGTCTTGAAGGA		
10	1202	<i>Lhb</i> +237R	TGGTTTTTCCATCCCAGGT		
10	+221	<i>Lhb</i> +185F	GACAGTTTCTGTATTATACTGAGT		
19	+221	<i>Lhb</i> +257R	CTCACTCTACCCCTGACC		

Supplementary Table 2: Primers used for high-coverage MNase-qPCR (continuation)

Gene	Primer (position relative to TSS)	Primer sequence $(5' \rightarrow 3')$	
Com	+97F	ATGGATTACTACAGAAAATATGCAG	
Cga	+196R	CCTGAATAATAAAGTCTCCATCAGG	
Lhb	+200F	TGCCGGCTGCTTTGCCTCCT	
	+396R	CAGGCCATTGGTTGAGTCCT	
RPL0P	+96F	GCGACCTGGAAGTCCAACTA	
	+296R	ATCTGCTTGGAGCCCACAT	

Supplementary Table 3: Primers used for mRNA quantification using qPCR

Supplementary Table 4: Primers used for PCR amplification of DNA sequences used for *Lhb*, *Cga* and 601 nucleosomes reconstitution

Gene/ sequence	Nucleosome	Incorporated restriction site	Primer (position rel. to TSS)	Primer sequence $(5' \rightarrow 3')$
	TSS	BglI	-130F	ATGGCCTTGCCGGCC CTGACCTTGTCTGTGT CTC
Lhb		DrallI	+23R	ATCACTGCGTGGAGC CTCTCCATTCTTGAT
		BglI	+29F	ATGGCCTTGCCGG <i>CG</i> ATGGTAGGGCCCAGG GTA
	+1	DraIII	+17R	ATCACTGCGTGAGAC CCATCACCAGCCATG
Cga	TSS	BglI	-159F	ATGGCCTTGCCGGCT GCAATGTGATATGAT CAATTGATG
		DraIII	-9R	ATCACTGCGTGAGTC TCCCACTGTCTTTTAT AC
	+1	BglI	+39F	ATGGCCTTGCCGGCA T <i>CGA</i> CAATCACCTGC CC
		DraIII	+189R	ATCACTGCGTGCTAA TTATTTTCCTACCAAC ATTTATGC
601 positioning sequence	601	BglI	F	ATGGCCTTGCCGGC <i>C</i> <i>GA</i> TGGACCCTATACG CGGCC
		DraIII	R	ATCACTGCGTGGAAT T <i>CGA</i> TATCCC <i>CGA</i> GA AGG

Supplementary Table 5: Primers used for PCR amplification of DNA sequences used for optical tweezers handles preparation

Name	Primer/modification	Primer sequence $(5' \rightarrow 3')$		
Biotin handle	F (5'-biotin)	GCTTTAATGCGGTAGTTTATCA		
	R (Nt.BbVCI)	GCAGCATTAGGAAGCAGCCCAGGCATTAGGAAG CAGCCCAG		
Dig handle	F (5'-phosphate/Nb.BbvCI)	GCATTAGGAAGCAGCCCAGGCTTTATTGCGGTAG TTTATCA		
	R (5'-digoxigenin)	GCATTAGGAAGCAGCCCAG		
601 alignment	F (BglI)	ATGGCCTGCACGGC <i>CGA</i> TGGACCCTATACGCGGC C		
	R (DraIII)	ATCACTGCGTGGAATTCGATATCCCCGAGAAGG		

Supplementary Table 6: DNA sequences used for *Lhb*, *Cga* and 601 nucleosomes reconstitution

Nucleosome	DNA sequence $(5' \rightarrow 3')$
Cga TSS (-9/-159)	TGCAATGTGATATGATCAATTGATGTCATGGTAATTATACCAAGTGCCATCCAA TCACTGGGTAGAATTTACCCCTGATCCCTGAGCTTATGTGCAGCTGGGAACATG CAATTTGTATTACTCTGCTGGTATAAAAGACAGTGGGAGACT
Cga +1 (+39/+189)	ATCGACAATCACCTGCCCAGAACACATCCCTCAAAAAGTCCAGAGGTAGGT
Lhb TSS (-128/+23)	CCTGACCTTGTCTGTGTCTCGCCCCCAAAGAGATTAGTGTCTAGGTTACCCAAG CCTGTAGCCACTACTTAGTGGCCTTGCCACCCCCACAACCCGCAGGTATAAAG CCAGGTGCCCAAGGTAGGGAAGGTATCAAGAATGGAGAGGCTC
Lhb +1 (+29/+179)	GATGGTAGGGCCCAGGGTACTTCCCAATCCCACCAAACCCATAGATGGACAGC CTTGTGACCTGGGGGTTGGAGGAGGGGGGGGGG
601 (221 bp)*	TGCGTGGAATTCGATATCCCCGAGAAGGTCGCTGTTCAATACATGCACAGGAT GTATATATCTGACACGTGCCTGGAGACTAGGGAGTAATCCCCTTGGCGGT TAAAACGCGGGGGACAGCGCGTACGTGCGTTTAAGCGGTGCTAGAGCTTG CTACGACCAATTGAGCGGCCTCGGCACCGGGATTCTCCAGGGCGGCCGCGT ATAGGGTCCATCGGCCG

(*) The canonical 601 sequence, composed of 150 bp, is marked in bold.

Supplementary Table 7: Quantification of the purity of reconstituted nucleosomes used in the optical tweezers experiments

Construct		NAK	NUK	LMP	Purity	
					From Gel	After ligation*
Lhb TSS	H2A	41%	53%	5%	91%	>96%
Cga TSS	H2A	41%	52%	7%	88%	>94%
Cga +1	H2A	39%	53%	8%	87%	>93%
Cga + 1	H2A.Z	46%	46%	8%	85%	>92%
<i>Lhb</i> +1	H2A	32%	60%	8%	88%	>94%
Lhb TSS	H2A	35%	54%	10%	84%	>92%
Lhb TSS	H2A.Z	31%	61%	8%	88%	>94%
601	H2A	1%	98%	1%	99%	100%
601	H2A.Z	8%	90%	2%	98%	>99%

* Based on at least 2:1 enrichment as indicated in Supplementary Fig. 3d