

Figure S1. Related to Figure 1. Purification and analysis of mouse GPR56 ECR

(A) (Left) SDS-PAGE analysis of mouse GPR56 ECR purified from insect cells. N-terminal fragment (NTF, black arrow) and *Stachel* (green arrow) are observed. (Right) Gel filtration chromatography of cleaved GPR56 ECR. (B) Multi-Angle Laser Light Scattering (MALLS) analysis of purified GPR56 ECR and calculated molecular weight, which is consistent with purely monomeric glycosylated GPR56 ECR and inconsistent with any higher-order oligomer. (C) MALDI-TOF mass spectrometry of purified GPR56 ECR (blue) and GAIN domain only (red). Calculated molecular weights are displayed above peaks. Calculated molecular weights are consistent with cleaved NTFs (with inhomogeneous glycosylation). (D) Circular Dichroism (CD) spectroscopy temperature melts of mouse GPR56 ECR (top) and GAIN domain only (bottom). (E) Representative image of mouse GPR56 ECR-monobody α5 complex crystals used for x-ray data collection. (F) Representative diffraction pattern for native data set. (G) Representative electron density of GPR56 ECR crystal structure showing lack of density at GPS cleavage site, indicating complete autoproteolysis. (H) Interactions between the GPR56 *Stachel* and the GAIN domain NTF. Water molecules shown as red spheres. (F) Orientation of cleaved *Stachel* in GAIN domain of GPR56 (NTF, gray; *Stachel*, green) and Lphn1 (NTF, pink; *Stachel*, cyan). * indicates autoproteolysis site.

Figure S2

Figure S2. Related to Figure 1. Monobody generation and characterization

(A) Sequences of 13 monobodies selected with affinity for mouse GPR56 ECR. Highest affinity clone, α 5 (yellow), used for subsequent experiments. Affinities evaluated by yeast surface display. (B) Schematic of monobody yeast surface display, mammalian cell expression of full-length GPR56, and purified GPR56 ECR-coated M280 beads used for binding affinity measurements. Note: after coating with GPR56 ECR and before α 5 binding, M280 beads were blocked with excess biotin. (C) Flow cytometry of HEK293 cells stained with α 5. Untransfected and full-length-FLAG-GPR56-transfected cells shown in blue and red, respectively. (Left) Dot plot showing correlation between GPR56 expression (anti-FLAG staining) and α 5 binding. (Right) Concentration titration of α 5 to measure binding affinity. (D) (Top) α 5 point mutations result in decreased affinity for GPR56 ECR by M280 bead assay. (Bottom) Location of α 5 point mutations m1-m5 on the crystal structure. Mutated residues shown as blue spheres. (E) Differential scanning fluorimetry temperature melts of mGPR56 ECR (T_m = 58.13 ± 0.13°C), α 5 (T_m = 71.38 ± 0.13°C), and mGPR56 ECR- α 5 complex (T_m = 59.75 ± 0.14°C). Quadriplucate measurements for each sample are plotted as negative temperature derivative of RFU vs temperature. Peak corresponds to T_m. (F-G) Close-up views of the binding interfaces between α 5 and (E) the PLL domain and PLL-GAIN linker and (F) the GAIN domain. Residues at the binding interface are shown as sticks. The PLL domain, PLL-GAIN linker, GAIN domain, and α 5 are colored cyan, magenta, gray, and orange, respectively. Polar contacts are indicated by yellow dashes.

Figure S3. Related to Figure 3. Cell-surface expression of mouse GPR56. Flow cytometry of various *GPR56* constructs stained with anti-FLAG antibody and α 5.

Figure S4. Related to Figure 3. G protein signaling of mouse GPR56. High-Five membranes with full-length mouse GPR56 were subject to mock or urea treatment to induce NTF-shedding and compared to membranes with no receptor. Membranes were reconstituted with G proteins (α and $\beta\gamma$). The receptor-mediated G protein activation kinetics were measured using the [35S]-GTP γ S binding assay. (A) GPR56 and G α_{13} . (B) GPR56 and G α_q . (C) GPR56 and G α_s . (D) GPR56 and G α_i .

Figure S5. Related to Figure 4. Pairwise surface conservation analysis of PLL domain

(A) Cartoon illustrating approximate time since last common ancestor with human. (B) Pairwise surface conservation analysis of human GPR56 ECR vs gorilla, hedgehog, and zebrafish mapped to the structure of mouse GPR56 ECR. (C) Percent identity between full length human and mouse protein sequences of GPCRs from several families.

Figure S6

Figure S6. Related to Figure 7. Detailed possible mechanisms leading to experimental observations of GPR56 activity

Four possible mechanisms are proposed (numbered 1-4) that explain the observed phenomena. We do not rule out the possibility of additional mechanisms nor do we deny that more than one proposed mechanism may occur. In our experiments, four systems were tested, each corresponding to a GPR56 perturbation (labeled A-D). Black arrows represent NTF shedding. Pointed (stimulating G-protein signaling) and flat-ended (inhibiting G-protein signaling) red arrows may represent conventional binding interactions, weak and transient interactions, or random collisions.

Proposed mechanism 1 relies on the hypothesis that, even in the absence of ligand, there exists some small but significant constitutive level of shedding in GPR56. By this mechanism, the higher the level of constitutive shedding, the more G protein signaling occurs, due to the observation that the CTF of the receptor is highly active. (A1) wt GPR56 undergoes some level of constitutive shedding leading to the observed basal activity of the receptor. (B1) Upon addition of α 5, the constitutive shedding decreases, leading to the observed decrease in G protein signaling. (C1) The H89A mutation on the conserved face of PLL domain does not alter constitutive shedding, resulting in the observation that H89A has similar basal activity to wt. (D1) The ECR of S4, corresponding to only the GAIN domain, has an increased level of constitutive shedding, leading to the observed high basal activity of the Δ PLL construct.

Proposed mechanism 2 relies on the hypothesis that a ligand may bind the conserved face of the PLL domain, exert mechanical force, and thereby cause NTF shedding. Similar to mechanism 1, by this mechanism, with more ligand-induced shedding, more G protein signaling occurs, due to the observation that the CTF of the receptor is highly active. (A2) wt GPR56 undergoes some level of ligand-induced shedding. (B2) Upon addition of α 5, the ligand-induced shedding is not affected. (C2) The H89A mutation on the conserved face of PLL domain abolishes ligand binding, and therefore blocks ligand-induced shedding. (D2) The ECR of S4 lacks the ligand-binding site on the PLL domain, and therefore does not undergo ligand-induced shedding.

Proposed mechanism 3 relies on the hypothesis that domains in the ECR directly or indirectly inhibit signaling by interacting in some way with the 7TM. (A3) The PLL domain in wt GPR56 partially inhibits 7TM. (B3) Together, the PLL domain and α 5 strongly inhibit the 7TM. (C3) The H89A mutation on the conserved face of PLL domain does not affect PLL-mediated inhibition of the 7TM. (D3) The ECR of S4 lacks the inhibitory PLL domain, and therefore has higher basal activity than wt.

Proposed mechanism 4 relies on the hypothesis that the GAIN domain stimulates signaling by directly or indirectly interacting with the 7TM. (A4) The PLL domain in wt GPR56 partially inhibits the stimulatory GAIN domain. (B4) Together, the PLL domain and α 5 strongly inhibit the stimulatory GAIN domain. (C4) The H89A mutation on the conserved face of PLL domain does not affect PLL-mediated inhibition of the GAIN domain. (D4) The ECR of S4 lacks the inhibitory PLL domain, and therefore has higher basal activity than wt.

Salzman et al., Supplemental Information

		Surface expression	SRE assay signaling	function in		
Construct	Description of mutation	(HEK293T)	(not normalized for expression)	zebrafish		
wild-type	wt FL mGPR56	3	3	0		
wild-type (N-FLAG)	wt FL mGPR56 with N-FLAG	1	0	ND		
R33E	R33N is a human disease mutation	2	ND	ND		
G36D+Q37A	S36P is a human disease mutaiton	0	ND	ND		
R38Q	human disease mutation	0	ND	ND		
N39A	delete N39-linked glycosylation	2	ND	ND		
T41A	delete N39-linked glycosylation	2	ND	ND		
Y88S	Y88C is a human disease mutation	1	ND	ND		
Y88C	human disease mutation	0	ND	ND		
H89A	conserved, surface-exposed patch	3	4	3		
C91S	human disease mutation	0	ND	ND		
G106R	conserved, surface-exposed patch	1	ND	ND		
C121S+C177S	delete interdomain disulfide	4	4	0		
A137R+S139R	conserved, surface-exposed patch	2	ND	ND		
N148A	delete N148-linked glycosylation	3	ND	ND		
S150A	delete N148-linked glycosylation	3	4	0		
H381S	autoproteolysis-null	2	2	1		
T383G	autoproteolysis-null	4	2	ND		
S3	splice variant 3	0	ND	ND		
S4	splice variant 4 (Δsignal peptide + ΔPLL)	0	0	ND		
ΔPLL	S4 with signal peptide	1	4	ND		
CTF	T383M,Y384,etc. through native C-terminus	1	4	ND		
7TM	H401M,Y402,etc. through native C-terminus	0	0	ND		

		Yield in insect cells		
Construct	Description of mutation	(purified ECR)	Scale:	
wild-type	wt FL mGPR56	3	none	0
R38Q	human disease mutation	0	little bit	1
R38W	human disease mutation	0	less than wt	2
Y88C	human disease mutation	1	comparable to wt	3
Y88S	Similar to Y88C	1	more than wt	4
C121S+C177S	delete interdomain disulfide	4	not determined	ND

Table S1. Related to Figure 3. Expression, signaling, and myelination phenotypes of all mouse GPR56 mutants tested.

Alignment S1. Multiple sequence alignment of full-length GPR56 from 14 species. Conservation score is calculated for positions with at least some detectible conservation (9 is most conserved). ECR domain structure is annotated based on the crystal structure of the ECR, while 7TM and intracellular region (ICR) are annotated based on sequence-based predictions: s, signal peptide; P, PLL; l, linker; G, GAIN; 7, 7TM; I, ICR. Secondary structure is also annotated for the ECR: α , α -helix; β , β -strand based on the crystal structure. Cysteine residues involved in the intra-PLL domain disulfide bond are colored red. Cysteine residues involved in the interdomain (PLL-GAIN) disulfide bond are colored blue. The conserved pentraxin motif on the PLL domain, beginning with mouse H89, is highlighted yellow. The conserved N-linked glycosylation site (glycan is adjacent to the conserved patch on the PLL domain) is highlighted green. Autoproteolysis occurs between the two residues highlighted in black. Bolded residues have been found mutated in human diseases.

Conservatio	on:	94 4 4 64 446 4744449 4 69966964666 63 646 94 3 494
cuckoo	1	MKVFLLLLLSPLQGVGANGDQEEDF R F CG D R NQ-TQNSSVIYEH-SP-ANIS
chicken	1	MKVLLLLLLSPLQGVGVSG-RQEDF R F CG D R NQ-TENSSVIYEH-SS-ANIS
zebrafish	1	MKQNPAKTARMWIIICLLFVLGQA-TD-NDRDF KMCG KWLHGIAPQNLEYDLKTGCERIE
bat	1	MAAPVQVQTGPLLLGLLLLVQGAQAGG-FREDF RFCG Q R NQ-TQKSSLRYER-WTQLRIS
bovine	1	MTAQVLLQMPLFLLG-LFLVPGAHGGG-PREDF R FCGQRNQ-TQNSSLHYKQ-ASQLHIS
elephant	1	MAAQGL-QTALFPLVVLLLIQGTLCGG-LQEDFRFCGQRNQ-TQTSNLRYEQ-TAVLHIS
mouse	1	MAVOVLROMVYFLLSLFSLVOGAHSGS-PREDF R FC G O R NO-TOOSTLHYDO-SSEPHIF
rat	1	MAVOVLLOMVYFLLTLLFLVOGAHGAS-PREDF R FC G O R NO-TOOSTLHYDO-TSEPHIF
gorilla	1	MTAOSLLOTTLFLLSLLFLVOGAHGRG-HREDF R F CS O R NO-THRSSLHYKP-TADLRIS
monkev	1	MTAOSLLOTTLFLLSLLFLVOGAHGRG-HREDF R F CS O R NO-THISSLHYKF-TPDLRIS
chimp	1	MTAOSLLOTTLFLLSLLFLVOGAHGRG-HREDF R FCSORNO-THRSSLHYKP-TPDLRIS
human	1	MTPOSLLOTTLFLLSLLFLVOGAHGRG-HREDF R FCSORNO-THRSSLHYKP-TPDLRIS
consensus	1	M ag llgt lfllsllflvgGahg g reDFrfCggrng tg sslhVe t elrIs
99	-	RRRRRRRRR RRRRRR RR
domain		
domain		333333333333333333333333333333333333333
Conservatio	on:	6 644 49 6 6643 3 46 4646699449 44 4 9 6 699 4
cuckoo	50	TENTAOALTTKRPFLPNRRSSYYKYTLPPTLGR YRFCTYWFKANR TLRLV-YGKOS
chicken	49	TENTAOALVIRSPELADRTTPSYOYSLPTTLGR Y RFCIYWFKANRTLWLA-YGKKS
zebrafish	59	ISANESTI.STOGRITAKCTOSSSIOLDSNPHONOSHECVEWEPLLD
hat	58	TENSEFAL TVHADEDCVDCASHEEDDDDCL VHECLSWNDHAC FLHLL_VCKND
bovine	57	TRNSFFALTTHADFDCVOSASWDFDLDDCLWHFCLWWNRHACKLHLR_VCKKD
olophan+	57	$\frac{1}{1} \frac{1}{1} \frac{1}$
mouse	58	
nouse	50	
gorilla	50	VWNIDESLIIKAFFFAAFDIFIFFFEFAGLINFCLIWSKNIGALHLK-IGAND
yorirra	50	IENSEEALIVHAFFFAARFASQSFFDFRGLINFCLIWNRHAGALHLL-IGRHD
abimp	50	IENSEEALIVHAPPPEARPASKSPPHPKGLINFCLIWDKHAGKLHLL-IGKHD
buman	50	IENSEEALIVHAPPPAANPASUSPPDPRGLINFCLIWNRHAGRLHLL-IGKRD
numan	20	IENSEEALTVHAPFPAAHPASKSFPDPKGLIHFCLIWNKHAGKLHLL-IGKKD
consensus	01	
SS .		рарарарара развите в р
domain		
Conservatio	. .	1161 11 111 111 111 11136666 1 3 10306 66 1361 16
cuckoo	105	
chicken	101	
chicken	116	
Zepidiish	110	
bauina	100	
DOVINe	109	FVLSDQALDLLCFRHQEETLV-PGPPLFATSVSSWWSPQNTSLPSAASFIFSFHNPP
erephant	1109	FLLSDQASGLLCFRHQEESLV-QGPPLLATSVSSWWSPQNT5LPGATSFTFSFHKPP
mouse	110	YLLSSQASKLLCFQKQEQSLK-QGAPLIATSVSSWQIPQNTSLPGAPSFIFSFHNAP
rat	110	YLLSSRASNLLCYRKQEESLK-QGAPLVATSVSSWQSPQNTSLPGAPSF1FSFHNAP
gorilla	110	FLLSDKASSLLCFQHQEESLA-QGPPLLATSVTSWWSPQNVSLPSAASFTFSFHSPP
monkey	110	FLLSDQASSLLCFQHQEESLA-QGPPLFATSVTSWWSPQNISLPSASNFTFSFHSPP
chimp	110	FLLSDKASSLLCFQHQEESLA-QGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPP
human	110	FLLSDKASSLLCFQHQEESLA-QGPPLLATSVTSWWSPQ NIS LPSAASFTFSFHSPP
consensus	121	tilsdnas lictqhqeesl qgppllatsvsswwspqNtSlpsa sftfsfh pp
SS		μμμμ ββββ ββββ βββββ
domain		PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Conservatio	on:	66 64443 4 4 6 34 4 67 43
cuckoo	159	NYFSEIKESMTVWEQDVEKHLNTLDSLIAQPLPPAAGAKEQQMLRRELGKLENILA
chicken	153	EMMPVWKQDVEDELAALDGLLARVPSAGSTAQRSLRHKLRALERTLA
zebrafish	165	DGAHINCKEKFCDEARLKPRGANMIEEVVMRFNAKGRVDLPCAQGTVIE-MDE
bat	169	-KVPEEGESVIQGALREICG-KGAVRVEG-AKSHPEAAGKAQVKQRLPPERP
bovine	165	-HKASHNVSVDVCELKRDLQWLSQFLKHPRK-TSRRPPFTSIGQQLQSLESKLA
elephant	165	-QKASHNASVDICELKRDLELLSKLLKHPRK-SSRRPSSTPARQHLQSLESKLT
mouse	166	-HKVSHNASVDMCDLKKELQQLSRYLQHPQK-AAKRPTAAFISQQLQSLESKLT
rat	166	-HKVSHNASVNMCDLKKELQLLSKFLQHPHK-ASKRPSAAFISQQLQNLESKLT
gorilla	166	-HTAAHNASVDMCELKRDLQLLSQFLKHPQK-ASRRPSAAPARQQLQSLESKLT
monkey	166	-HTAAHNASVDMCELKRDLQLLSQFLKHPQK-ASRRPSATPASQQLQSLESKLT
chimp	166	-HTAAHNASVDMCELKRDLQLLSQFLKHPQK-ASRRPSAAPASQQLQSLESKLT
human	166	-HTAAHNASVDMCELKRDLQLLSQFLKHPQK-ASRRPSAAPASQQLQSLESKLT
consensus	181	h a hnasv dmcelkrdlqllsnflkhp k asrrpsa qqlqslesklt
SS		αααααααααααααααααααααααααααααααααααααα
domain		111111111111111111111111111111111111111
Conservatio	on:	4 3 4433 44 4 74664 364 4 4 49 446 664 466 4674696366
cuckoo	215	KVEF-EGQNQTFGKATVHATVLRVQPTQAPQ-HLAFASQ-R-EKGREVHGFAVDLPSSLF
chicken	200	QVEL-EEQNQTFGKAALRATVLSISPTQAPQ-HLAFASP-K-EENREVQGFAVDLPSSLF
zebrafish	217	EFTGHNF-TVPAPRF-VDANTIPSVYIPSSLR
bat	218	CVRWCLGWAWQHPGKCVRGRGWRGRRGRGVCLWLTLRTLCLQEGPGEILEYSVLLPRALF
bovine	217	SVNF-TGDAVSFEEERINATVWKLQPAFSSQ-DLHIHSR-QEEEQSEILEYSVLLPSVLF
elephant	217	SMRF-AGDTVSFEEDRINATVWKLQPTAGLQ-DLHLHSR-QEEEQSEVLEYSVLLPRVLF
mouse	218	SVSF-LGDTLSFEEDRVNATVWKLPPTAGLE-DLHIHSQ-KEEEQSEVQAYSLLLPRAVF
rat	218	SVSF-LGDTLSFEENRVNATVWKLPPTAGLE-DLQIHSQ-QEEEQSEVQAYSVLLPRAVF
gorilla	218	SVRF-TGDTVSFEEDRINATVWKLQPTAGLQ-DLHIHSR-QEEEQSEILEYSVLLPRTLF
monkey	218	SVRF-MGDTVSFEEDRVNATVWKLQPTAGLQ-DLHIHSR-QEQEQSEILEYSVLLPRTLF
chimp	218	SVRF-MGDTVSFEEDRINATVWKLQPTAGLQ-DLHIHSR-QEEEQSEILEYSVLLPRTLF
human	218	SVRF-MGDMVSFEEDRINATVWKLQPTAGLQ-DLHIHSR-QEEEQSEIMEYSVLLPRTLF
consensus	241	<pre>svrf lgdtvsfeedrvnatvwklqptaglq dlhihsr qeeeqseileysvllPrslf</pre>
SS		α ββββββ βββββββ αααα ββββ βββββββ αααα
domain		GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Conservatio	on:	46464 4 4 6644664466669664666449666669646 6446 9946996669
cuckoo	271	MMAKEKEEV-LEHRVLLVDINSQTMFQDENRSHVLGDKVVGISLVDMVVANLSDPVVLTF
chicken	256	VMAKRKEEEVVEHRVLLVDINSQAMFQDENSSHILGDKVVGISLVDTVVANLSEPVVLTF
zebrafish	247	SVSRRKSKVVCTYYKNKTLFERGPSKSALLDDIVGLSVENETIRNLIEPVKIRF
bat	278	QKTKGRRGE-AAQRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVPNTKVANLSEPVVLTF
bovine	274	QKAKGRRQE-AEKRLFLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANLSEPVVLTF
elephant	274	QRAKGRRGE-AEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIIVQNTKVVNLSEPVVLTF
mouse	275	QQTRGRRRD-DAKRLLVVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVTNLSDPVVLTF
rat	275	QQTRGRRRD-AAKRLLVVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVTNLSDPVVLTF
gorilla	275	QRTKGRRGE-AEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANLTEPVVLTF
monkey	275	QRTKGRRGE-AEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANLTEPVVLTF
chimp	275	eq:QRTKGRRGE-AEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVDNLTEPVVLTF
human	275	QRTKGRSGE-AEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANLTEPVVLTF
consensus	301	<pre>qktkgrrge aekrlllvdfssqalFqdknssqvLgekvlGivvqntkvaNLsePVvltF</pre>
SS		βββββββ ββββββ ββββββ
domain		GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Conservatio	on:	4943464666449969497 4 4 63946 99 94 4636949 97999999696646
cuckoo	330	FHNQLPRNVTPLCVFWQEDTTD-SSGSWDSYGCATVT-RDSQTDCRCNH
chicken	316	FHNRLPRNVTPLCVFWREDGTA-SSGNWDSYGCTTVE-GDTRTDCRCNHLTYFAVLMVSS
zebrafish	301	HHRPFAPDSSGR C VS W DTKQDNEVNWKDDGCDTVKINEEQTECHCNH <mark>LT</mark> YFAILVQVE
bat	337	QHQPQPKNVTLQ C VF W VEGSALTGPGSWSSAGCKTIS-REMQTSCHCDH <mark>LT</mark> YFAVLMVAS
bovine	333	QHQPQPKNVTLQ C VF W VEDMTLSSPGSWSDAGCETIR-RETQTSCRCNH LT YFAVLMVAS
elephant	333	QHQPQPKNVTLQ C VF W VEDPTLNSPGSWSDAGCETLR-RETQTSCLCNH <mark>LT</mark> YFAVLMVSS
mouse	334	QHQPQPKNVTLQ C VF W VEDPASSSTGSWSSAGCETVS-RDTQTSCLCNH LT YFAVLMVSS
rat	334	QHQPQPKNVTLQ C VF W VEDPASSSTGSWSSEGCETVS-RDTQTSCLCNH <mark>LT</mark> YFAVLMVSS
gorilla	334	QHQLQPKNVTLQ C VF W VEDPTLSSPGHWSSAGCETVR-RETQTSCFCNH LT YFAVLMVSS
monkey	334	QHQPQPKNVTLQ C VF W VEDPTLSNPGRWSSAGCETVR-RETQTSCFCNH <mark>LT</mark> YFAVLMVSS
chimp	334	QHQLQPKNVTLQ C VF W VEDPTLSSPGHWSSAGCETVR-RETQTSCLCNH <mark>LT</mark> YFAVLMVSS
human	334	QHQLQPKNVTLQ C VF W VEDPTLSSPGHWSSAGCETVR-RETQTSCFCNH <mark>LT</mark> YFAVLMVSS
consensus	361	qHqpqpknvtlq C VfWvedptlsspgsWssaGCeTvr retqTsC CnH <mark>LT</mark> YFAvLmvss
SS		ββ ββββββββ βββ βββββββ βββββββ ββ
domain		GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Conservatio	on:	044343944496466669946966664 6946494 966 66 46 69669
cuckoo	388	PDITYVHRDYLSIITYIGCLISALASICTIL-FLYFRSKQRDQIMSM-QIHMNL
chicken	374	PEISYLHRDSLSIITYIGCLISALASISTIF-FLYFRSKQRDQITSM-HIHMNL
zebrafish	359	QKSTVRHLKALTFITAVGCAVSLVSCLVL-FYWLCKRRRGKKNQISLVHRGL
bat	396	VEVDAVHKHYLTLLSYVGCVISALACVLTIAAYLFSRRKSRDYTI-KVHMNL
bovine	392	LEVDAVHKHYLSLLSYVGCVISALACVLTIAAYLCSRRKSRDYTI-KVHMNL
elephant	392	VEVDAVHKHYLTFLSYVGCVISALACVCTIAAYLCSRRKPRDYTI-KVHMNL
mouse	393	TEVEATHKHYLTLLSYVGCVISALACVFTIAAYLCSRRKSRDYTI-KVHMNL
rat	393	MEVEATHKHYLTLLSYVGCVISALACVFTIAAYLCTRRKSRDYTI-KVHMNL
gorilla	393	VEVDAVHKHYLSLLSYVGCVVSALACIVTIAAYLCSRRKPRDYTI-KVHMNL
monkey	393	VEVDAVHKHYLSLLSYVGCVVSALACVVTIAAYLCSRRKPRDYTI-KVHMNL
chimp	393	VEVDAVHKHYLSLLSYVGCVVSALACVVTIAAYLCSRRKPRDYTI-KVHMNL
human	393	VEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPCRRKPRDYTI-KVHMNL
consensus	421	vevdavHkhyLsllsyvGCviSalacvvtiaayLcs Rrk rd yti kvHmnL
domain		111111177777777777777777777777777777777
Conservatio	on:	6 969996 496466469434664494446 69966994 9646964666696666666
cuckoo	440	LGAIFLLDITFLISEHLASSSSEAVCRAGGLFLHFSLLSCLTWMGIEGYNLYRLVIEV
chicken	426	LGAIFLLDFTFLVSEHLASSSSQAACRAGGLFLHFSLLSCLTWMGIEGYNLYRLVIEV
zebrafish	410	VVAIFLLCLFFILTGILANVANETVCQLTGSLLHYGLLSTLCWMAMEVFHTFLLVRKVFN
bat	447	LLAVFLLDVSFLLSEPVALTGSEAGCRASAIFLHFSLLACLSWMGLEGYNLYRLVVEV
bovine	443	LVAVFLLDVSFLLSEPVALSGSEAACRASAIFLHFSLLACLSWMGLEGYNLYRLVVEV
elephant	443	LLAIFLLDVSFLLSEPVALTGSEAGCHASAMLLHFSLLACLTWMGLEGYNLYRLVVEV
mouse	444	LSAVFLLDVSFLLSEPVALTGSEAACRTSAMFLHFSLLACLSWMGLEGYNLYRLVVEV
rat	444	LLAVFLLDVSFLLSEPVALMGSEAACRTSAMFLHFSLLACLSWMGLEGYNLYRLVVEV
gorilla	444	LLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLACLSWMGLEGYNLYRLVVEV
monkey	444	LLAVFLLDVSFLLSEPVALTGSQSGCRASAIFLHFSLLACLSWMGLEGYNLYRLVVEV
chimp	444	LLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLACLSWMGLEGYNLYRLVVEV
human	450	LLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLEGYNLYRLVVEV
consensus	481	llAvFLLdvsFllsepvAltgseagCrasaifLHfsLLa ClswMglegynLvrlvvev
domain		<i>าาาาาาาาาาาาา</i> กา <i>ก</i> า <i>ก</i> า <i>ก</i> า <i>ก</i> า <i>ก</i> า <i>ก</i>

Conservatio	on:	644644649994 496646 446494 9444 6663646463444 4464469944
cuckoo	498	${\tt FNAYHDHFLLKLCLVGWGIPFFCVTLIFLASWTNYGPFSIPIHESVGGRSTN-ATICWI{\tt T}$
chicken	484	${\tt FNAYHDHFLLKLCLVGWGLPFFCVMLILLANWTNYGPFYIPVYESIGGRSTN-ATICWL {\tt T}$
zebrafish	470	SPLPIWIFYLMGFGFPFLLVSILLSV-GDIYGERKIKPSDDVNNPYRMCWMT
bat	505	FGAYVPGYLLKLSVVGWGFPAFLVTLVALVDINNYGSIILSVQRTPESVIYPSMCWI R
bovine	501	FGTYVPGYLLKLSIVGWGFPASLVMLVALVDVNNYGRIILAVHKTPESVIYPSMCWIQ
elephant	501	FGTYVPGYMLKLSLMGWGFPIFLVTLVALVDVNNYGPIILAVHRTPERVIYPSMCWI R
mouse	502	FGTYVPGYLLKLSIVGWGFPVFLVTLVALVDVNNYGPIILAVRRTPERVTYPSMCWI R
rat	502	FGTYVPGYLLKLSTVGWGFPVFLVTLVALVDVNNYGPIILAVRRTPDHVIYPSMCWI R
gorilla	502	FGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWI R
monkey	502	FGTYIPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPESVIYPSMCWI R
chimp	502	FGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWI R
human	508	FGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWI R
consensus	541	fqtyvpqyllkLslvGwqfplflvtLvalvdv nyqpiilavhrtpe viypsmCWir
domain		<i>า</i> [*]
Conservatio	on:	64746464969664696666 6974496646494364 474 6694649964669
cuckoo	557	SPLIHNVVNLGFFSLVFLFNSVMLGAMVREIVRQNKKGHKLK-HVLALLGLSILLG
chicken	543	SPLIHNVVNLGFFSVVFLFNLVMLGAMIREILRQNKKGHKLK-HVLALFGLSILLG
zebrafish	521	EGDKSQLAHYIINIGLLAVVVSSGLVMLFL-VVREIRNRPDWKKIHVAFLSIWGLTCLYG
bat	563	DSLVSHITNLGLFSLVFLFNAAMMATMVVQILRLHPHTQKWP-HVLTLLGLSLVLG
bovine	559	DSLVSHVTNLGLFSLVFLFNTAMLGTMVVQILRLRPHAQKWP-HVLTLLGLSLVLG
elephant	559	DSLVSHITNLGLFGLVFLFNMAMLGTMVVQILRLQPHAQKWP-HVLTLLGLSLVLG
mouse	560	DSLVSYVTNLGLFSLVFLFNLAMLATMVVQILRLRPHSQNWP-HVLTLLGLSLVLG
rat	560	DSVVSYVTNLGLFSLVFLFNMAMLATMVVQILRLRPHSQKWP-HVLTLLGLSLVLG
gorilla	560	DSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWS-HVLTLLGLSLVLG
monkey	560	DSLVSYITNLGLFSLVFLFNMAMLGTMVVQILRLRPHTQKWS-HVLTLLGLSLVLG
chimp	560	DSLVSYITNLGLFSLVFLFNMAMLATMVVOILRLRPHTOKWS-HVLTLLGLSLVLG
human	566	DSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWS-HVLTLLGLSLVLG
consensus	601	dslvsyitNlGlfslVflfnmaMlatmvvgilRlrphtgkw hvLtllGLslvlG
domain		<i>าาาาาาา่าาา่าาาาาาาาาาาาาาาาาา่าาา</i>
Conservatio	on:	4699949669699 9469 764949469699766676964644 664 4 694 46969
cuckoo	612	IPWALVFFSFTSGIFRLVS L YIFTIINSLQGFLIFLWYWTMVL-QARKS-P-DMQSSSDS
chicken	598	IPWALVFFSFTSGVFRLVSLYIFTIVNSLQGFLIFLWYWTMVL-QAKKS-S-DFHGSSDS
zebrafish	580	TTWALGFLDFGPFSEVTLFLFCIINSLQGFFLMLRYYALERMKKKDV-SSSDGSSSGS
bat	618	LPWALVFFSFASGTFQLVVLYFFSIMTSFQGFLIFLWYWSMRL-QAQGG-PSPLKSSSDS
bovine	614	LPWALVFFSFASGTFQLVI L YFFSIITSFQGFLIFLWYWSMRL-QAQVG-PSPLKSNSDS
elephant	614	LPWALVFFSFASGTFQLVVLYLFSIITSFQGLLIFLWYWSMRL-QARGGGSSSLKSSSDS
mouse	615	LPWALVFFSFASGTFQLVI L YLFSIITSFQGFLIFLWYWSMRF-QAQGG-PSPLKNNSDS
rat	615	LPWALVFFSFASGTFQLVI I YLFSIMTSFQGFLIFLWYWSMRF-QAQGG-PSPLKNNSDS
gorilla	615	LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRL-QARGG-PSPLKSNSDS
monkey	615	LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFLWYWSMRL-QARGG-PSPLKSNSDS
chimp	615	LPWALIFFSFASGTFQLVILYLFSIITSFQGFLIFIWYWSMRL-QARGG-PSPLKSNSDS
human	621	LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRL-QARGG-PSPLKSNSDS
consensus	661	lpWALvFfsFasGtFqlVvlylFsIitSfQGfliflwYwsmrl qarqq psplksnSdS
domain		777777777777777777777777777777771111111

Conservatio	on:	64444666 6 4
cuckoo	669	VKLQPNSRESHLG
chicken	655	VKLQPNSSQSHPG
zebrafish	637	SKQHMLQTNEKS
bat	676	TRLPITSGSTSSSCI
bovine	672	ARLPISSGSTSSSRI
elephant	673	ARIPINSGSTSSGRI
mouse	673	AKLPISSGSTSSSRI
rat	673	AKLPISSGSTSSSRI
gorilla	673	ARLPISSGSTSSSRI
monkey	673	ARLPISTGSTSSSRI
chimp	673	ARLPISSGSTSSSRI
human	679	ARLPISSGSTSSSRI
consensus	721	arlpissgstsssri
domain		IIIIIIIIIIIIII

pr cu

protein:	Uniprot ID:
cuckoo: cuckoo GPR56	(A0A091FQY3)
chicken: chicken GPR56	(E1C0Q2)
zebrafish: zebrafish GPR56	(F1QZM9)
bat: Myotis lucifugus GPR56	(G1PD76)
bovine: bovine GPR56	(A4IF70)
elephant: elephant GPR56	(G3T7E2)
mouse: mouse GPR56	(Q8K209)
rat: rat GPR56	(Q8K3V3)
gorilla: gorilla GPR56	(Q50DM6)
monkey: Rhesus macaque GPR56	(Q50DM8)
chimp: chimpanzee GPR56	(Q50DM7)
human: human GPR56	(Q9Y653)

Alignment S2 (p. 1 of 2). Multiple sequence alignment of PTX and LNS domains. Canonical Pentraxin (PTX) and Laminin/Neurexin/Sex hormone-binding globulin (LNS) domains were identified including all PTX and LNS domains annotated to be present in all aGPCR ECRs and aligned with the PLL domain from GPR56/ADGRG1. Bolded sequences have well-defined PTX domain features (including an intradomain disulfide bond, cysteine residues colored red, and the conserved PTX motif, highlighted yellow). GPR133/ADGRD1 and GPR98/ADGRV1 are annotated to have a PTX domain, though they lack the intradomain disulfide bond and therefore do not have a complete PTX motif, highlighted cyan.

hCRP	47	PL-KAFTVCLHFYTE-LS-STRGYSIFS-YATKRQDNEI-LIF-WSKDIGYS-
hSAP	48	PL-ONFTLCFRAYSD-LSRAYSLFS-YNTOGRDNEL-LVY-KERVGEYS-
mGPR56	28	P-REDFRFCGORNOTOOSTLHYDOSSEPHI-FVWNTEETLT-
hGPR126	178	PELSAFTLCFEATKV-GH-EDSDWTAFS-YSNASF-TOL-LSF-GKAKSGYF-
hGPR112	50	PELSRFTACIDLVFM-DD-NSRYWMAFS-YITNNALLGR-EDIDLGLAG
hGPR144	138	PELAALTACTHVOWD-CA-SPDPAALFS-VAAPALPNAL-OLRAFAEPGGVVRAA-
hGPR133	97	PEOCGPEGVTFSFFWKTO-GEOSRPIPSAYGGOVISNGF-KVCS-SGGRGSVE-
hGPR98	1346	PSRNNTIANFTFS-AWVMPNANTNGFIIAKDDGNGSIYYGV-KIOTNESHVT-
hSHBG	65	KITKTSSSFEVR-TWDPEGVIFYG-DTN-PKDDWFMLGL-RDGRPEIO-
bNRX1a	316	PI-OSSSDETTLSFK-TLORNGLMLHTGK-S-ADYVNLAL-KNGAVSLV-
mNRX3b	103	PSTRSDRLAVGFS-TTVKDGTLVRT-DSAPGLGDFLOLHT-E0GKTGVV-
mT.AMa2	2953	K-VGLDLLVEFEFR-TT-RPTGVLLGISSOK-MDGMGIEM-IDEKLMFH-
mbrind2	2900	
hCRP	93	FTVGGSEILFEVP-EV-TVAPVHICTSWESASGIVEFWVDGKP
hSAP	92	LYIGRHKVTSKVI-EK-FPAPVHICVSWESSSGIAEFWINGTP
mGPR56	67	IRAPFLAAPDIPRFFPEPRGLYHFCLYWSRHTGRLHLRYGKHD
hGPR126	224	LSISDSKCLLNNALPVKEKEDIFA-ESFEOLCLVWNNSLGSIGVNFKRNY
hGPR112	95	DHOOLILYR-LGKTFSIRHHLASFOWHTICLIWDGVKGKLELFLNKER
hGPR144	189	
hGPR133	147	
hGPR98	1396	LSLHYKTLGSNATYTAKTTVMKYLEE-SVWLHLLTTLEDGTTEFYLDGNA
hSHBG	109	
bNRX1a	360	INI.GSGAFEALVEPVNGKFNDNAWHDVKVTRNLROVTISVDGIL
mNRX3b	150	FNTGTVDTSTKEERTPVNDGKYHVVRFTRNGANATLOVDNWP
mLAMa2	2997	VDNGAGRETATYDAE-TPGHMCNGOWHKVTAKKIKNRLELVVDGNO
MELTINGE	2,5,7	
hCRP	134	-RV-RKSL-K-KGYTVGAEASIILGQ-EQSQSLV-GDIGNVNM
hSAP	133	-LV-KKGL-R-QGYFVEAQPKIVLGQ-EQ-DSYGG-KFDRSQSFV-GEIGDLYM
mGPR56	110	-YL-LSSQAS-R-LLCFQKQEQSLKQGAPLIAT-SVSSW-QIPQNTSLP-GAPSFI
hGPR126	96	-ET-VPCD-S-T-ISKVIPGNGKLLLGSNQNEIVSLK-GDIYNFRL
hGPR112	142	-IL-EVTDQPHNLTPHGTLFLGH-FLKNESSE-VKSMMRSFP-GSLYYFQL
hGPR144	94	-RAGARGL-G-AGHPVPSGGILVLGQ-DQ-DSLGG-GFSVRHALS-GNLTDFHL
hGPR133	189	STSDPSGK-V-SRDYGESNVNLVIGS-EQ-DQAKCYENGAFDEFII
hGPR98	1445	-MP-RGIKSL-K-GEAITDGPGILRIGAGINGNDRFT-GLMQDVRS
hSHBG	150	-VL-RLRQVS-GPLTSKRHPIMRIALGG-LLFPASNL-RLPLVPALD-GCLRRDSW
bNRX1a	404	-TT-TGYTQE-DYTMLGSDDFFYVGG-SPSTADLP-GSPVSNNFM-GCLKEVVY
mNRX3b	192	-VN-EHYPTGRQLTIFNTQAQIAIGG-KDKG-RLFQGQLSGLYYD-GLKVLNMA
mLAMa2	3042	-VD-AQSPNS-ASTSADTNDPVFVGG-FPGGLNQF-GLTTNIRFR-GCIRSLKL
hCRP	180	WDFVLSPDEINTIYLGGPFSP-NVL-NWRALKYEVQGEVFTKPQLWP
hSAP	179	WDSVLPPENILSAYQGTPLPA-NIL-DWQALNYEIRGYVIIKPLVWV
mGPR56	159	FSFHNAPHKVSHNASVD
hGPR126	313	WNFTMNAKIL-SNLSC-NVKGNVVDWQNDFWNIPNL-ALKAESNLS
hGPR112	188	WDHILENEEFMKCLDG-NIV-SWEEDVWLVNKII
hGPR144	278	WARALSPAQLHRARACAPPSE-GLLFRWDPGALDV
hGPR133	231	WERALTPDEI
hGPR98	1486	YERKLTLEEI
hSHBG		
-	200	LDKQAEISASAPC
bNRX1a	200 137	LDKQAEISASAPC KNNDVRLELSRLAKQGDPKMKIHGV
bNRX1a mNRX3b	200 137 241	LDKQAEISASAPC KNNDVRLELSRLAKQGDPKMKIHGV AENNPNVRLV

```
hCRP: human C-reactive_protein (P02741)
hSAPC: human Serum amyloid p-component (P02743)
mGPR56: mouse GPR56 (Q8K209)
hGPR126: human GPR126 (Q86SQ4)
hGPR112: human GPR126 (Q86SQ4)
hGPR144: human GPR12(Q81ZF6)
hGPR144: human GPR144(Q7Z7M1)
hGPR133: human GPR133 (Q6QNK2)
hGPR98: human GPR98 (Q9WXG9)
hSHBG: human sex hormone-binding globulin (P04278)
bNRX1a: bovine neurexin-1-alpha, isoform 9a (Q28146-9)
mNRX3b: mouse neurexin-3-beta, without splice insert 4 (Q8C985)
mLAMa2: mouse laminin subunit alpha-2 (Q60675)
```

Alignment S2 (p. 2 of 2)

Alignment S3. Multiple sequence alignment of PTX domains. Canonical pentraxin (PTX) domains were identified including all the well-defined PTX domains present in all aGPCR ECRs and aligned to the PLL domain from GPR56/ADGRG1. Conservation score is calculated for positions with at least some detectible conservation (9 is most conserved). PTX domain features are illustrated (including an intradomain disulfide bond, cysteine residues colored red, and the conserved PTX motif, highlighted yellow). The conserved PTX motif is defined as H Φ C*xxWxxxxG, where Φ is a hydrophobic residue and the C* participates in the intradomain disulfide bond.

Conservation: 9 7 77 9 4 777 44 4 4 hCRP 47 P-LKAFTVCLHFYTELSSTRGYSIFSYATKRQDNEILI--FWSKDIGYSFTV--G-GSEhSAPC 48 P-LQNFTLCFRAYSDLS--RAYSLFSYNTQGRDNELLV--YKERVGEYSLYI--G-RHKmGPR56 28 P-REDFRFCGQR----NQTQQSTLHYDQSSEPHIF----VWNTEETLTIRAPFLAAPDhGPR126 178 PELSAFTLCFEATKVGHEDSDWTAFSYSNASFTQLL-S--FGKAKSGYFLSI---SDSK-50 PELSRFTACIDLVFMDDNSRYWMAFSYITN---NAL---LGREDIDLGLAG--D-H-QhGPR112 138 PELAALTACTHVQWDCASPDPAALFSVAAPALPNALQLRAFAEPGGVVRAALVVR-GQHA hGPR144 1 Pel aftvC h r ysifsy t nli fq d yslv consensus е q k Conservation: 4 4 499 9 4 4 3 4 4 4 hCRP 100 IL-F-EVP----EV-----TV-APVHICTSWESASGIVEFWVDGK-PRVRKSLKKGY 99 VT-S-KVI----EK-----FP-APV<mark>HICVSWESSSG</mark>IAEFWINGT-PLVKKGLRQGY hSAPC mGPR56 77 IP-----RFFPE----P-RGLYHFCLYWSRHTGRLHLRYGKH-----DY 231 CL-L-NNALPVKEKEDI----FAESFEQLCLVWNNSLGSIGVNFKRNYETVPCDSTISK hGPR126 hGPR112 98 QLILYRLG----KTFSIRHHLASF-QWH<mark>TICLIWDGVKG</mark>KLELFLNKE--RILEVTDQPH hGPR144 197 PF-L-AAF----RA----DG-RWHHVCATWEQRGGRWALFSDGRRRAGARGLGAGH vkl gy consensus 61 il l v е af hiClsWe sGrvelwv gk Conservation: 4 4 4 97 4 4 6 44 7 43 4 49 4 4 4 4 6 hCRP 144 TVGAEASIILGQEQ-----SQSLVGDIGNVNMWDFVLSPDEINTIYLGGPFSP 143 FVEAQPKIVLGQEQ---DSYGGKFDRSQSFVGEIGDLYMWDSVLPPENILSAYQGTPLPA hSAPC mGPR56 111 LLSSQASRLLCFQKQ--EQ----SLKQGAPLIATSVSSWQIPQN-----TSLPGAP 284 VIPGNGKLLLGSNQ---NE----IVSLKGDIYNFRLWNFTMNAKILSN--LSCNVKG hGPR126 151 NLTPHGTLFLGHFLKNESSEVK--SMMRSFPGSLYYFQLWDHILENEEFMK----C-LDG hGPR112 242 PVPSGGILVLGODO---DSLGGGFSVRHALSGNLTDFHLWARALSPAOLHRARACAPPSE hGPR144 consensus 121 v aqqsliLqqeq ds sl qsl qdi f lWd vl pd i pl a Conservation: 4 4 7 6 6 201 NVL-NWRALKYEVQGEVFTKPQLWP hCRP hSAPC 200 NIL-DWQALNYEIRGYVIIKPLVWV 156 SFIFSFHNAPHKVSHNASV----D mGPR56 NUM DUONDERNITONI AT RADONI O LCDD126 221

NGPR120	221	$N \vee V -$	DWQr	IDF WN I PNLA	TRAF2NTS
hGPR112	204	NIV-	SWEE	DVWLVNKI-	I
hGPR144	299	GLLF	RWDE	GALD	V
consensus	181	nvl	W	yev	v

hCRP: human C-reactive_protein (P02741) hSAPC: human Serum amyloid p-component (P02743) mGPR56: mouse GPR56 (Q8K209) hGPR126: human GPR126 (Q86SQ4) hGPR112: human GPR112(Q8IZF6) hGPR144: human GPR144(Q7Z7M1) Alignment S4. Multiple sequence alignment of the GPR56 PLL domain from 14 species. Conservation score is calculated for positions with at least some detectible conservation (9 is most conserved). The β -strands were identified and numbered, and the β -sheets were colored based on the crystal structure (β -sheet A, the more divergent from PTX and LNS domains is colored cyan; β -sheet B, the more conserved with PTX and LNS domains is colored maroon [see Figure 2]). A 47-residue insertion in zebrafish Gpr56 was removed from this alignment for clarity (Δ 47).

Conservation:	699669	7 666	66	569		9	66	9 (5 66		6		6	6 6	699 9
bat	27G-FREDFRFC	GQRNQ	-TQK	SSLRYE	R-WTQ	LRIS	IENS	EEALT	VHAPF	PGVPGA	S	HFF	PDPR	GLYI	HFCLSW
bovine	26G-PREDFRFC	GQRNQ	-TQN	SSLHYK	Q-ASQ	LHIS	IRNS	EEALT	IHAPF	PGVQSA	S	WPF	PLPR	GLYI	HFCLYW
chicken	19G-RQEDFRFC	GDRNQ	-TENS	SSVIYE	H-SS-	ANIS	IENT	AQALV	IRSPF	LADRTI	PS-YQ	YSL	PTTL	GRYI	RFCIYW
chimp	27G-HREDFRFC	SQRNQ	-THR	SSLHYK	P-TPD	LRIS	IENS	EEALT	VHAPF	PAAHPA	.s	QSF	PDPR	GLYI	HFCLYW
cuckoo	19GDQEEDFRFC	GDRNQ	-TQN	SSVIYE	H-SP-	ANIS	IENT.	AQALI	IKRPF	LPNRRS	SY-YK	YTL	PPTL	GRYI	RFCIYW
dolphin	26G-PREDFRFC	GQRNQ	-TQN	SSLHYK	R-TSE	LHIS	VKNT	EEALA	VHAPE	PGAHLA	P	RSF	PHPR	GLYI	HFCLYW
elephant	26G-LQEDFRFC	GQRNQ	-TQT	SNLRYE	Q-TAV	LHIS	IKNS	EGALT	VHAPF	PAAPGA	S	RVL	PDRR	GLYI	HFCLYW
gorilla	27G-HREDFRFC	SQRNQ	-THR	SSLHYK	P-TAD	LRIS	IENS	EEALT	VHAPF	PAARPA	S	QSF	PDPR	GLYI	HFCLYW
human	27G-HREDFRFC	SQRNQ	-THR	SSLHYK	P-TPD	LRIS	IENS	EEALT	VHAPF	PAAHPA	s	RSF	PDPR	GLYI	HFCLYW
monkey	27G-HREDFRFC	SQRNQ	-THI	SSLHYK	F-TPD	LRIS	IENS	EEALT	VHAPF	PEAHPA	S	RSF	PHPR	GLYI	HFCLYW
mouse	27S-PREDFRFC	GQRNQ	-TQQ	STLHYD	Q-SSE	PHIF	VWNT:	EETLT	IRAPF	LAAPDI	P	RFF	PEPR	GLYI	HFCLYW
rat	27S-PREDFRFC	GQRNQ	-TQQ	STLHYD	Q-TSE	PHIF	VWNT	DESLT	IRAPF	PAAPDI	P	YFF	PEPR	GLYI	HFCLYW
sperm_whale	26G-PREDFRFC	GQRNQ	-TQN	SGLHYK	R-ASE	LHIS	IRNT	EEALT	VHAPF	PGAHPA	P	RSF	PHPR	GLYI	HFCLYW
zebrafish	26DN-DRDFKMC	GKWLH	GIAP	QNLEYD	LKTGC	ERIE	ISAN	ESTLS	IQGRI	TAKCTÇ	SSSIQ	LDS	NPHQ	NQSI	HFCVFW
beta-strand number	ß		-	β2		3	β4	β5						C	6
			•		J.										
Concorvation.	0 6	600	6					6	60		6 60			6	
bat	05NDUACET UT T	-VCKNI			TICEO	COFD	_ TT A			CCMMDE		DCA	እርፑሞ	U FC	
bowine	0 / NDHACKT HI D				TICED	UOEE UOEE	- T T V.			COMMET	ONTGI	DGY	AGET	r o F C	
abiakon	SOFKANDTI WI A	VCKK				ייעסיו דידידי	-111V. V		NVC	VUERCO	VINTET	E OA	GEVT.	г D 〒D	
chimp	05NDUACDI ULI	-YCKP			TICEO	UOFF					ONTEL	DCA	VGLT	rr TC	
cuckoo	90FKANDTLDLV		SELLO		STTOC	KEGU	- סבאי עידידסי		TNUS_	VVLKCC	KNTGI	AGA	CEAC	T C	
dolphin	OANDHACKI HI D				TICED	NP2Ő NP2Ő	-GIV.	FCADI				DCA	ACEL	r o F C	
elephant	0/ CDHTCKI HI D	-VCKN			TICFP	HOEE				CCWWCE	ONTGI	DCA	TCL.	F G	
gorilla		VCKU			TICEO	UOPP	GT A				ONVET	DCA		F C	
buman					TICEO	NOPP				TOWNER	ONTGI	DGY	ACET	FC	
monkey	95DRHAGRIHLI	-YGKH			LLCFO	HOEE			TATSU	TSWWSF	ONTST	DGA	SNET.	T C	
molise		-VCKH			TICEO	RUEU	-STK				ONTGI	DCA	DGET	r C F C	
rat		VCKN		CDACN		NOPP	GT V			CCMOCT.	ONTEL	DCA	DOPT	F D F C	
sporm whole	0 ANDUACKI UI D				TICEP	NGPP		EC ADI I		COMMON	ONTGI	DCA	ACET	FC FC	
zebrafieb		UNCKN		ZDNCI C		ND GU	-CVO	DC VNM.	TEEV	MDENVE	CRADI	DCA	AGT I	тъ	
beta_strand number				л попб		PTPŐ	_gvg. ^			THEFT	GRVDL	II CA		- 11	
beca-strand number	57	50	89	•	β1		Δ	À7	B11				β12		

Supplementary Experimental Procedures

Cloning and purification of aGPCR extracellular fragments from insect cells

Extracellular regions (ECRs) of the following aGPCRs were cloned into pAcGP67a: mouse GPR56 (ADGRG1) full ECR (UniProt: Q8K209, residues S27-S392); mouse GPR56 GAIN domain (residues M176-S392); human GPR56 full ECR (UniProt: Q9Y653, residues G27-S392); zebrafish Gpr56 full ECR (UniProt: F1QZM9, residues T25-E358); human latrophilin 3 (LPHN3/ADGRL3) HormR+GAIN domains (UniProt: Q9HAR2, residues E496-S856); rat latrophilin 1 (LPHN1/ADGRL1) HormR+GAIN domains (UniProt: O88917, residues P460-I849); human brain angiogenesis inhibitor 3 (BAI3/ADGRB3) HormR+GAIN domains (UniProt: O60242, residues E498-E868); human GPR112 (ADGRG4) GAIN domain (UniProt: Q8IZF6), residues E2450-S2731). C-terminal 6xHIS tags were added for affinity purification. C-terminal AVI-tags corresponding to the sequence GLNDIFEAQKIEWHE were added to aid biotinylation.

A baculovirus expression system was used for expression of proteins in High Five insect cells as previously described (Arac et al., 2012). The secreted, glycosylated proteins were purified using nickel-nitrilotriacetic agarose resin (Qiagen) and size-exclusion chromatography (Superdex 200 10/300 GL; GE Healthcare).

Purification of monobodies from E. coli

The genes encoding the identified monobodies were cloned into an expression vector, pHBT (Sha et al., 2013). Monobodies were expressed in *E. coli* via autoinduction at 37°C for 20 hours. Monobodies were purified via an Nterminal 6xHIS tag using nickel-nitrilotriacetic agarose resin (Qiagen), and refolded on the Ni-column using the β cyclodextrin method (Oganesyan et al., 2004). Refolded proteins were gel-filtered using a Superdex 200 10/300 GL column (GE Healthcare).

X-ray crystallography data processing, phasing, and refinement

Data were processed using HKL2000. To obtain a heavy metal substructure and calculate experimental phases, the CRANK2 (ccp4) software package (Ness et al., 2004) was used, despite the weak anomalous signal. The model generated from the anomalous data was used for molecular replacement (phaser.mr, ccp4) into the native dataset. Phenix.refine (PHENIX) was used for all refinement.

Dual luciferase SRE reporter plasmid construction

Dual luciferase SRE reporter plasmid was constructed to have constitutively expressed renilla luciferase and SREactivated firefly luciferase on the same plasmid. The pmirGLO (Accession Number FJ376737) and pGL4.33 [luc2P SRE-Hygro] (Accession Number FJ773212) vectors were obtained from Promega. The SRE-firefly luciferase region of pGL4.33 was used to replace the PGK-firefly luciferase. The resulting reporter plasmid is referred to as dualLUC-SRE.

G protein signaling assay

HEK293T cells were seeded in 24-well plates (45,000 cells in 0.5 mL DMEM+10% FBS/well). After 12-18 hours, cells reached 40-50% confluence and were transfected with 11.3 ng *Gpr56* (WT or mutant) + 45.0 ng dualLuc-SRE + 0.23 μL FUGENE6 per well from a master mix. After 24 hours, media was aspirated and replaced with DMEM + 0% FBS. For monobody treatment, monobody was added to cells 6.5 hours after the start of serum starvation. After 12 hours total of serum starvation, media was aspirated. Cells were lysed using the Dual-Glo® Luciferase Assay System from Promega and firefly and renilla luciferase signals were measured using a SynergyTM Neo luminescence plate reader. Signaling intensity in RLU (fold increase) is reported as:

 $(Firefly_{GPR56}/Renilla_{GPR56})/(Firefly_{EV}/(Renilla_{EV}))$.

Flow cytometry

HEK293T cells were transiently transfected with FL or mutant mouse *GPR56* constructs (openbiosystems clone ID: 3709247) using Fugene6. After 48 hours, cells were detached and stained. Flow cytometry was performed using Guava® easyCyte as previously described (Lu et al., 2015).

Monobody α5 staining: To measure binding affinity, cells were stained primarily with biotinylated monomeric monobody at a range of concentrations, and secondarily with labeled neutravidin. To detect binding (as in Figure S3), cells were stained with 100 nM pre-tetramerized monobody on labeled neutravidin in order to increase avidity in a single staining reaction.

FLAG staining: Cells expressing N-terminally FLAG-tagged constructs were stained primarily with 1:1000 mouse anti-FLAG M2 (Sigma) and secondarily with 1:100 anti-mouse-FITC.

Streptavidin pull-down and western blot

Streptavidin pull-down and western blot were performed as previously described (Stoveken et al., 2015). Briefly, HEK293T cells were transiently transfected with GPR56 constructs using FUGENE6. After 48 hours, cells were treated with EZ-Link[™] Sulfo-NHS-LC-Biotin (ThermoFisher), quenched, lysed, subject to pull-down with Streptavidin MagneSphere[®] Paramagnetic Particles (Promega), and subject to western blot using an antibody against the GPR56 CTF (Millipore Cat#: ABS1028, RRID: AB_2617058; 1:1000 dilution).

Zebrafish stocks and rearing conditions

Zebrafish (*Danio rerio*) were maintained in the Washington University Zebrafish Consortium facility (http://zebrafish.wustl.edu/), and all experiments were performed in compliance with Washington University's institutional animal protocols. WT (AB-Tubigen) embryos were collected from harem matings and reared at 28.5°C in egg water (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl₂, 0.33 mM MgSO₄). Embryos were staged in hours postfertilization (hpf) as previously described (Kimmel et al., 1995). To prevent pigmentation in embryos > 1 dpf, egg water was supplemented with phenylthiourea to 0.003%.

Whole mount in situ hybridization

Whole-mount in situ hybridizations were performed as described previously (Thisse and Thisse, 2008). Briefly, embryos were fixed at 65 hpf in 4% paraformaldehyde at 4°C overnight followed by dehydration in 100% methanol. Following dehydration, embryos were washed in 0.2% PBS-Tween (PBSTw), permeabilized in proteinase K (20mg/ul diluted 1:1000 in 0.2% PBSTw), and incubated with an *mbp* Digoxygenin-labeled riboprobe (Lyons et al., 2005) overnight at 65°C in hybridization buffer (50% formamide). Following overnight incubation, embryos were washed to remove formamide, blocked in 2% blocking medium supplemented with 10% normal sheep serum and 0.2% TritonTM, and incubated in primary antibody (Anti-Dig, Fab fragments (1:2000), Product # 11214667001, Roche) overnight in block. Embryos were then washed in Maleic Acid Buffer with 0.2% TritonTM, and developed by alkaline phosphatase treatment. After colorimetric development was complete, embryos were post-fixed in 4% paraformaldehyde and stored long-term in 70% glycerol. Embryos were mounted on slides with glycerol and imaged at 10x with an AxioCam MRm on a light microscope (Zeiss AxioImager M2). Imaging was done in a blinded fashion such that the interpreter did not know whether the larvae were injected with WT or mutant mRNA. For further detail, please see previous studies which have employed similar *mbp* quantification protocols (Petersen et al., 2015, Ackerman et al., 2015).

Direct G protein-coupling assay using insect cell membranes

Protocol was implemented as previously described (Stoveken et al., 2015), the only difference being that for the present study, insect cell membranes were pre-incubated with G proteins for 5 minutes before starting the assay.

Matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry

Matrix was prepared by first preparing solvent: 50% acetonitrile + 50% (0.1% TFA in H_2O). 1mg sinapinic acid was dissolved in 0.1mL solvent to form saturated solution with precipitate. Samples for MALDI-TOF were prepared by spotting 0.5µL purified protein and 0.5µL matrix on the target plate. Samples were analyzed on a Bruker ultrafleXtreme MALDI-TOF/TOF instrument.

Circular Dichroism Spectroscopy

Purified mouse GPR56 ECR and GAIN domain were diluted to 200 nM and 250 nM, respectively in 100 mM NaCl, 25 mM sodium phosphate, pH 7.5. The sample was placed in a 1 cm path length cuvette and CD signal at λ =220±5 nm was observed as the temperature was increased. All measurements were taken on a Jasco J-715 CD spectrometer.

Supplementary References

- Ackerman, S. D., Garcia, C., Piao, X., Gutmann, D. H. & Monk, K. R. 2015. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. *Nat Commun*, 6, 6122.
- Arac, D., Boucard, A. A., Bolliger, M. F., Nguyen, J., Soltis, S. M., Sudhof, T. C. & Brunger, A. T. 2012. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. *EMBO J*, 31, 1364-78.
- Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. 1995. Stages of embryonic development of the zebrafish. *Dev Dyn*, 203, 253-310.
- Lu, Y. C., Nazarko, O. V., Sando, R., 3rd, Salzman, G. S., Sudhof, T. C. & Arac, D. 2015. Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. *Structure*, 23, 1678-91.
- Lyons, D. A., Pogoda, H. M., Voas, M. G., Woods, I. G., Diamond, B., Nix, R., Arana, N., Jacobs, J. & Talbot, W. S. 2005. erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. *Curr Biol*, 15, 513-24.
- Ness, S. R., De Graaff, R. A., Abrahams, J. P. & Pannu, N. S. 2004. CRANK: new methods for automated macromolecular crystal structure solution. *Structure*, 12, 1753-61.
- Oganesyan, N., Kim, R. & Kim, S.-H. 2004. One-column Chemical Refolding of Proteins. PharmaGenomics, 22-26.
- Petersen, S. C., Luo, R., Liebscher, I., Giera, S., Jeong, S. J., Mogha, A., Ghidinelli, M., Feltri, M. L., Schoneberg, T., Piao, X. & Monk, K. R. 2015. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. *Neuron*, 85, 755-69.
- Sha, F., Gencer, E. B., Georgeon, S., Koide, A., Yasui, N., Koide, S. & Hantschel, O. 2013. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. *Proc Natl Acad Sci U S A*, 110, 14924-9.
- Stoveken, H. M., Hajduczok, A. G., Xu, L. & Tall, G. G. 2015. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. *Proc Natl Acad Sci U S A*, 112, 6194-9.
- Thisse, C. & Thisse, B. 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. *Nat Protoc*, 3, 59-69.