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Supplementary Section S1 - Real dataset 4: mESC Data 

This is another of the datasets presented by Buettner et al. to validate scLVM1. Different from the 

three datasets we discuss in the main text, this dataset contains cells from the same cell type, and the cell-

cycle stage of each cell is known a priori. The data was generated from mouse embryonic stem cells 

(mESCs) using the Fluidigm C1 protocol, and the cells were staged for cell-cycle phase (G1, S, G2M) 

based on sorting of the Hoechst 33342-stained cell area of a flow cytometry (FACS) distribution. It 

contains gene expression measurements for 9,570 genes and 182 cells, 59 at the G1 stage, 58 at the S 

stage and 65 at G2M stage. The pre-processed (log-transformed normalized count) data is available in the 

supplementary material of Buettner et al1. The scLVM corrected data is available from the same source. 

When ccRemover is applied to the data it identifies the first principal component as a cell-cycle effect on 

the first iteration. Once this effect is removed from the data, no other features are deemed to be cell-cycle 

related.  

To examine ccRemover’s effectiveness at removing the cell-cycle effect from the data we use two 

metrics proposed by Buettner et al.1: (1) the existence of distinct clusters related to the cell-cycle stage 

when the data is projected onto its first two principal components, and (2) the number of significant gene-

gene correlations present in the data.  

The first metric is based on the same idea as we used in the main text: cells should not cluster 

according to the cell-cycle stage if the cell-cycle effect has been removed. From the plots of the original 

data onto its first two principal components there is a clear separation of cells according to the cell-cycle 

stage represented by the color of each of the points (Supplementary Fig. S1 a). After either ccRemover or 

scLVM is applied to the data this clear distinction is not observed (Supplementary Fig. S1 b & c). This 

indicates that the cell-cycle effect has been removed by both scLVM and ccRemover.  

The second metric is based on the idea that the cell cycle can lead to many gene-gene correlations 

in expression (often called gene co-expression) just because the expression of both genes is related to the 

cell cycle, and thus once the cell-cycle effect is removed there should be a smaller number of significant 

gene-gene correlations. As such the number of significant gene-gene correlations can be used as a 

measure of the strength of the cell-cycle effect in the data1. We examined the number of gene pairs that 

have significantly correlated (FDR adjusted, 0.01 level) expression for the original, scLVM corrected and 

ccRemover corrected data (result shown in Supplementary Table S1). The number of significant gene-

gene correlations detected on the scLVM or ccRemover corrected data is significantly lower than that on 

the original data. Furthermore, as in this data the cell-cycle stages are known a priori, Buettner et al. 

proposed to calculate the “gold standard gene-gene correlations” by controlling for the cell-cycle stage 
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and testing for the significance of the coefficient of one gene in a linear model where the expression of 

the other gene across cells is the response variable. We use a similar approach by fitting the following 

linear model.  

 

The number of gold standard significant gene-gene correlations detected was 22,874 (FDR adjusted, 0.01 

level), and these correlations are deemed to be “true positives”. Gene-gene correlations which are found 

to be significant on the original dataset, scLVM corrected data, or ccRemover corrected data but not 

among these gold standard correlations are deemed to be “false positives”. The numbers of false positives 

on different data are shown in Supplementary Table S1. We see that both scLVM and ccRemover 

dramatically reduce the number of false positives, and that ccRemover leads to less false positives than 

scLVM (2,284 vs 2,602). 

 

Supplementary Section S2 – Simulation of sparse cell-cycle effects on control 

genes 

ccRemover uses control genes to capture the effects in the data prior to comparing them to the 

cell-cycle genes to determine which effects are cell-cycle effects. If the cell-cycle effect only influences 

few control genes, it may not be captured by the principal components and hence missed for detection by 

ccRemover. We want to investigate how robust ccRemover is to the “sparsity” of the cell-cycle effect on 

control genes.  

We simulate data where we vary the percentage of control genes that are affected by the cell 

cycle. This is done using a modified version of our simulation model from the main text, where we 

generated the cell-cycle effect on the control genes  by . Now, we generate 

the cell-cycle effect by  , where  and . That 

is, only  proportion of control genes are influenced by the cell-cycle effect. The smaller  is, the sparser 

the cell-cycle effect on control genes is, and the harder the effect is to capture (and hence remove) using 

ccRemover. Our original simulation in the main text corresponds to . We now decrease the value of 

 gradually to generate data with sparse cell-cycle effect, and try to find the value of  under which 

ccRemover stops working on the generated data.  

Supplementary Figure S2 shows the performance of ccRemover on data generated with different 

values of . We plot the original data (left column) and ccRemover corrected data (right column) on their 



4 
 

first two principal components.  Different rows are data with different  values: 50%, 25%, 10%, 8%, and 

5%, from top to bottom. We find that when , the cells (denoted by points) are separated only by 

the cell type (denoted by the shape), not by the cell-cycle stage (denoted by the color), in the ccRemover 

corrected data, showing that ccRemover successfully removes the cell-cycle effect. When , the 

cells are separated by both the cell type and the cell-cycle stage, showing that ccRemover does not or 

does not completely remove the cell-cycle effect. In our simulation, the cell-cycle effect can be described 

by two principal components, ccRemover is able to capture one or none of them when . 

ccRemover requires at least 8% of the control genes being influenced by the cell-cycle effect to 

remove all the cell-cycle effect, in our simulation. This requirement is likely to be satisfied for most real 

datasets. For example, as we have mentioned in the main text, Buettner et al. found that 44% of the 

control genes (a set of 6,500 genes not previously associated with the cell cycle) showed significant 

correlation with at least one cell-cycle gene in the T helper cell data1. 

Interestingly, this percentage, 8%, can be even lower when we have a greater number of genes or 

a greater number of cells, both of which will help the principal components to capture the cell-cycle 

effect. To demonstrate this we consider two additional simulations. For the first of these we simulate 

10,000 genes and 50 cells, instead of 2,000 genes and 50 cells in our original simulation, and for the 

second we simulate 2,000 genes and 200 cells. In both cases, ccRemover is able to effectively identify 

and remove the cell-cycle effect when the proportion of genes affected by the cell-cycle is 4% or greater 

(Supplementary Fig. S3 and S4).  

As a final remark, in all our simulations, the cell-type effect was never incorrectly removed by 

ccRemover regardless of the proportion of control genes which were affected by the cell cycle. This 

indicates that it is still safe, although not efficient, to use ccRemover on datasets where the cell-cycle 

effect is too sparse on the control genes to be detected. 

 

Supplementary Section S3 – Simulation Data with Incomplete and/or 

Inaccurate Annotations 

ccRemover relies on a known set of cell-cycle genes, which are often retrieved from annotation 

databases. In reality, the annotation databases are always incomplete and inaccurate. In order to examine 

the performance of ccRemover with incomplete and/or inaccurate annotations we propose additional 

simulations.  
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We simulate data according to two additional scenarios. As in the original simulation in the main 

text, under both scenarios, we simulate data for 50 cells and 2,000 genes, and of these 2,000 genes, 400 

are annotated as cell-cycle genes and the others are declared as control genes. In the first scenario, the 400 

annotated cell-cycle genes are composed of 200 true cell-cycle genes and 200 true control genes, and all 

the 1,600 annotated control genes are true control genes. In the second scenario, the 400 annotated cell-

cycle genes are composed of 200 true cell-cycle genes and 200 true control genes, and the 1,600 

annotated control genes are composed of 200 true cell-cycle genes and 1,400 true control genes. The way 

we simulate the expression of true control genes and true cell-cycle genes is the same as that in the main 

text. 

ccRemover was applied to data simulated under the two scenarios, and the corrected datasets 

along with the original dataset were projected onto their first two principal components. The results are 

displayed in Supplementary Fig. S5 and S6. Under both simulation scenarios, the inaccurate annotations 

lead to barely any change in the performance of ccRemover. This indicates that ccRemover is quite 

tolerant to incomplete and/or inaccurate annotations. 
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Supplementary Tables 

Supplementary Table S1. The number of significant gene-gene correlations in the mESC data. 

 

Data Number of Significant 

Gene-Gene Correlations 

Number of False 

Positives 

Original 1,028,686 1,007,111 

ScLVM 16,128 2,602 

ccRemover 15,358 2,284 
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Supplementary Figures  

Supplementary Figure S1. The data projected onto its first two principal components, with the colors 

representing the cell-cycle stage of each cell, G1 (red), G2M (blue) and S (green) (a) Original data: There 

are clear distinct clusters related to the cell-cycle stage for the cells. (b) scLVM corrected data: The 

distinct separation of cells by cell-stage is no longer present. (c) ccRemover corrected data: Similar to 

scLVM the cells are no longer separated by the cell-cycle stage. 
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Supplementary Figure S2. Simulated data with 2,000 genes and 50 cells. The rows correspond to 

differing proportions of the control genes affected by the cell cycle, 50%, 25%, 10%, 8% and 5%.  The 

columns represent the different datasets. (a) Original data. The cells always split into six clusters 

corresponding to cell-type and cell-cycle stage combinations. (b) ccRemover corrected data. The data 

splits into two groups corresponding to the cell type until the proportion of control genes affected by the 

cell cycle falls below 8% for the last row, where separation by the cell-cycle stage is visible. 
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Supplementary Figure S3. Simulated data with 10,000 genes and 50 cells. The rows correspond to 

differing proportions of the control genes affected by the cell cycle, 25%, 10%, 5%, 4% and 2%.  The 

columns from represent the different datasets. (a) Original data. The cells always split into six clusters 

corresponding to cell-type and cell-cycle stage combinations. (b) ccRemover corrected data. The data 

splits into two groups corresponding to the cell type until the proportion of control genes affected by the 

cell cycle falls below 4% for the last row, where separation by the cell-cycle stage is visible. 

 



10 
 

Supplementary Figure S4. Simulated data with 2,000 genes and 200 cells. The rows correspond to 
differing proportions of the control genes affected by the cell cycle, 25%, 10%, 5%, 4% and 2%.  The 
columns represent the different datasets. (a) Original data. The cells always split into six clusters 
corresponding to cell-type and cell-cycle stage combinations. (b) ccRemover corrected data. The data 
splits into two groups corresponding to the cell type until the proportion of control genes affected by the 
cell cycle falls below 4% for the last row, where separation by cell-cycle stage is visible. 
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Supplementary Figure S5. Simulated data with 200 cell-cycle genes annotated to the cell-cycle and 200 

control genes annotated to the cell cycle. 1,600 control genes as control genes. (a) Original data. The data 

is clustered into six groups corresponding to the combinations of cell type and cell-cycle status.  (b) 

ccRemover corrected data. The data splits into two groups corresponding to the cell types. 
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Supplementary Figure S6. Simulated data with 200 cell-cycle genes annotated to the cell cycle and 200 

control genes annotated to the cell cycle. 1,400 control genes and 200 cell-cycle genes as control genes. 

(a) Original data. Here the data is clustered into six groups corresponding to the combinations of cell type 

and cell-cycle status.  (b) ccRemover corrected data. The data splits into two groups corresponding to the 

cell types. 

 

 

 


