Supplemental Information for Wei et al.

Materials and Methods

Preparation of E. coli Spheroplasts

Spheroplasts were prepared from *E. coli* strain Top 10 (containing a pET45b plasmid for ampicillin resistance) in steps similar to that described in Martinac et al. (1). An overnight culture grown (37°C in shaking incubator, approximately 148 rpm) from one plate-picked colony was diluted 1:100 in TSB liquid media in the presence of ampicillin (25 μ g/mL) and allowed to grow to OD₆₀₀ of 0.5-0.7. 3 mL of this culture was diluted 1:10 into ampicillin-containing TSB media and cephalexin was added to reach a final concentration of 60 μ g/ml. The culture was then shaken at 37°C for 2-3 hours until single-cell filaments reached sufficient length observable under light microscope at 1000x oil immersion magnification; Martinac et al. noted that filaments from 50-150 μ m should produce spheroplasts 5-10 μ m in diameter (1).

Filaments were harvested by centrifugation at 1500 x g for 4 minutes, and the pellet was rinsed without resuspension by gentle addition of 1 mL of 0.8 M sucrose with 1 min incubation at room temperature and then re-suspended in 3 mL of 0.8M sucrose after supernatant has been removed via pipetting. The following reagents were added in order: 150 μ L of 1 M Tris Cl (pH 7.8); 120 μ L of lysozyme (5mg/ml); 30 μ L of Dnase I (5mg/ml); and 120 μ L of 0.125 M sodium EDTA (pH 8.0). This mixture was incubated at room temperature for 6 - 10 minutes to hydrolyze the peptidoglycan layer, and spheroplast formation was followed under microscope at 1000x. 1 mL of Solution A (20 mM MgCl₂, 0.7 M sucrose, 10 mM Tris Cl at pH 7.8) was gradually added over a 1 minute period while stirring, and the mixture was incubated for 4 minutes at room

temperature. The mixture was layered over two separate 7-mL aliquots of Solution B (10 mM $MgCl_2$, 0.8 M sucrose, 10 mM Tris Cl at pH 7.8) previously kept on ice. These mixtures were centrifuged for 2 minutes at 1000 x g to collect spheroplasts into a pellet, and the majority of the supernatant was removed via pipetting. Spheroplast pellets were re-suspended in about 300 µL of remaining liquid.

Confocal Microscopy Imaging of Spheroplasts

Spheroplasts were either prepared immediately before or thawed from frozen stock at -80°C and diluted 1:2 in 0.8 M sucrose. Spheroplasts frozen for at least 1-2 weeks appeared to provide consistent results in these experiments. Diluted spheroplasts were then placed on a poly-L-lysine coated glass slide and incubated with equal volume of FITC-labeled peptide (peptide stock concentration of $1.1-6.2 \times 10^{-4}$ M), giving an effective peptide concentration above the MIC for BF2, P11A BF2 and magainin 2 (HipC has effectively no antibacterial activity against *E. coli*). Peptides were typically incubated with spheroplasts for 1 minute, although some samples with HipC were allowed to incubate for 10-20 minutes. All peptides were synthesized at >95% purity by NeoScientific (Cambridge, MA) with a FITC group conjugated at the N-terminus. 1 µL of di-8-ANEPPS (Biotium, Hayward, CA) membrane dye was also added to membrane labeled samples. Spheroplasts were visualized with a Leica TCS SP5 laser scanning confocal microscope with excitation at 488 nm by an argon laser at 20% laser power output and 20% transmission and emission ranges of 499-532 nm (FITC) and 670-745 nm (di-8-ANEPPS). 8-bit, 512x512 images were collected at 63X magnification (Leica Plan-Apochromat oil objective; numerical aperture 1.40). Composite images were produced by Leica LAS AF software (Buffalo Grove, IL). Zstacks composed of slices with 0.04-0.08 µm thickness were evaluated for localization of peptide fluorescence within the spheroplast to prevent bias in the reading of the data. Data for each peptide was collected from a minimum of at least two independently prepared batches of spheroplasts characterized over a total of at least five separate imaging sessions for each peptide (Supplemental Tables 1-4). Data was generally consistent between different batches, although a few outliers, particularly one batch incubated with buforin II, emphasizes the need for sufficient replication to robustly characterize peptide mechanisms.

Supplemental Tables

Table 1: Percentages of imaged spheroplasts showing translocation and membrane localization of buforin II (BF2) for different spheroplast batches

	Batch 1	Batch 2	Batch 3	Batch 4
% translocating	83	11	78	85
% membrane localized	17	89	22	15
n of spheroplasts imaged	6	19	9	33

Table 2: Percentages of imaged spheroplasts showing translocation and membrane localizationof P11A buforin II (BF2) for different spheroplast batches

	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5
% translocating	60	22	42	21	15
% membrane localized	40	78	58	79	85
n of spheroplasts imaged	5	27	19	24	26

Table 3: Percentages of imaged spheroplasts showing translocation and membrane localization of magainin 2 for different spheroplast batches

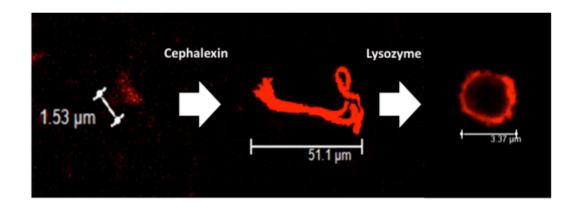
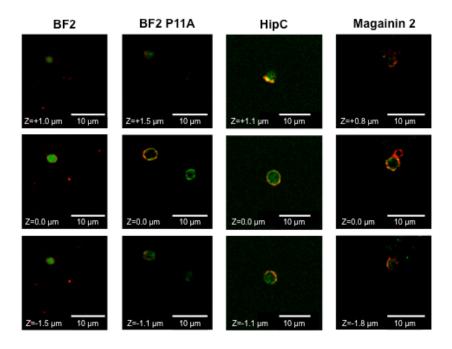

	Batch 1	Batch 2	
% translocating	17	21	
% membrane	83	78	
localized			
n of spheroplasts	46	14	
imaged			

 Table 4: Percentages of imaged spheroplasts showing translocation and membrane localization


 of HipC for different spheroplast batches

	Batch 1	Batch 2	Batch 3	Batch 4
% translocating	71	100	100	100
% membrane	28	0	0	0
localized				
n of spheroplasts	7	2	22	36
imaged				

Supplemental Figures

Supplemental Figure 1: Representative confocal microscopy images of *E. coli* at different stages during the formation of spheroplasts. Fluorescence shown is from the membrane dye di-8-ANEPPS.

Supplemental Figure 2: Confocal images of representative *E. coli* spheroplasts incubated with FITC labeled peptides (BF2, P11A BF2, HipC or magainin 2) and di-8-ANEPPS. The merged fluorescence of FITC (green) and di-8-ANEPPS (red) is shown. Images from three different positions in a single z-stack are shown for each peptide; z-positions are given relative to the middle image of each stack.

Supplemental Information References

1. Martinac, B., M. Buechner, A.H. Delcour, J. Adler, and C. Kung, 1987 Pressuresensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A 84:2297-301.