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SUPPLEMENTARY MATERIAL 
eSection 1. Summary of the Supplementary Material 

1.1 Content Overview 

This supplementary material is divided into five sections: 1) Summary of the supplementary material; 2) Modeling methodology; 3) 
Model parameterization; 4) Model Outcomes; and 5) Programming. Section 1 describes the purpose of the supplementary material and 
provides an overview of its content. Section 2 discusses the use of agent-based modeling (ABM) in our study and how the potential 
effects of e-cigarettes on smoking behavior present a research problem amenable to an ABM approach. Section 3 details the 
parameters used to operationalize mortality, smoking initiation, smoking cessation, e-cigarette initiation, e-cigarette cessation, and 
other processes in the model. Section 4 describes model outcomes, specifically as they relate to validating model output against 
empirical data, and discusses the results of our sensitivity analyses. Section 5 presents model pseudo code, and additional notes about 
programming the model. This supplementary content is referenced in the main text of the manuscript with the appropriate numbered 
header for each subsection.  

1.2 Purpose 

The content provided in this supplementary material was written with three main goals in mind: 1) To provide additional information 
regarding both the modeling methodology and the validation of the model presented in the main manuscript: “Modeling the Effects of 
E-Cigarettes on Smoking Behavior: Implications for Future Adult Smoking Prevalence”; 2) To further justify the modeling approach, 
and detail the specifics of model validation not presented in the main text of the manuscript; and 3) To provide technical programming 
guidance and model process equations so that readers are able to reproduce the model and its outcomes as they were presented in the 
manuscript.   

eSection 2. Modeling Methodology 

2.1 Agent-Based Modeling Approach 

Agent-based models (ABMs) have been used across a wide variety of disciplines to understand how macro-level phenomena can be 
driven by micro-level interactions between individuals and their environment. They are especially well suited for modeling individual-
to-individual or individual-to-environment feedback mechanisms and adaptation. Many have emphasized the utility of ABMs in the 
practice of epidemiology and public health when examining causal inference.1–4 A recent Institute of Medicine (IOM) report 
highlighting the value of ABMs in tobacco research concluded that the use of ABMs has not been fully explored in the tobacco 
regulatory space,5 despite their more common application in other public health areas (e.g., obesity6–8 and infectious disease9). ABMs 
differ philosophically and programmatically from traditional compartmental models often used in epidemiological research. 
Philosophically speaking, ABMs seek to explain outcomes from an individual-level and generative perspective (e.g., feedbacks, 
adaptations, evolution), while compartmental models explain outcomes from an aggregate (i.e., group) perspective. This leads to 
differences in computational modeling methods. While ABMs are more amenable to an object-oriented programming approach, where 
individuals are considered unique objects, compartmental models typically take the form of structured programming approaches (e.g., 
matrices and arrays).  

We chose to use an ABM approach for three reasons: 

1) The generative and modular nature of this ABM leaves room for further model development examining dynamics at the individual
level as more data about e-cigarettes become available. The purpose of this initial model was to demonstrate the variety of possible 
outcomes dependent upon the effects that e-cigarettes may have on smoking. This model can be extended to incorporate other tobacco 
products, like smokeless tobacco, in particular snuff and snus, and social network and environmental effects on e-cigarette use;  

2) The simplicity of a bottom-up approach from an object-oriented perspective provides greater model clarity and modularity. While a
traditional compartmental model would have generated similar results, the structural approach typically used in dynamical systems 
models would involve programming the set of individual-traits and their various levels of heterogeneity, leading to state explosion.10 
Furthermore, from a practical standpoint, ABMs are an aggregate of N compartmental models operating in parallel, where N 
represents the number of individuals. Specifically, our agent-specific traits, unique to every individual in our model includes: a) 
smoking status (former, never, current) b) e-cigarette status (former, never, current), c) dual user (former, current), d) never user of e-
cigarettes and cigarettes, e) age (18-85), f) probability of smoking initiation, and g) probability of e-cigarette initiation. The object-
oriented programming approach in the backend of the ABM method allows us to store these traits and trait histories to follow an 
individual’s experience trajectory; and  

3) Our goal was to explore how individual-level e-cigarette use changes population-level smoking prevalence. Smoking status,
probability of smoking initiation, and probability of e-cigarette initiation are either dynamic and/or heterogeneous outcomes/states 
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across the individuals in our model, a problem well-suited for ABMs.  eFigure 1 presents a model overview of all possible nicotine use 
states in our model, excluding age.  

eFigure 1. Model diagram illustrating all possible nicotine use states (i.e., excludes age), transition pathways, and descriptive 
transition rates between states. Our model assumes that death rates change only by smoking behavior, and not by e-cigarette use (see 
model assumptions subsection in the methods section of the main text).  

 

eSection 3. Model Parameterization 

Please refer to eTable 1 for detailed parameter explanations.  

3.1 E-Cigarette Initiation and Cessation Rate 

We assume that the probability of e-cigarette initiation among never, former, and current smokers follows a diffusion of innovations 
sigmoid function11 (eFigure 3). This function is additionally described in detail in eTable 1 (i.e., under ecigInitSmoker) and also more 
broadly in the main paper. Parameters for the slope of the curve (ecigNetSlope), the maximum probability of initiation among smokers 
(eCigProbMax), years until maximum e-cigarette initiation probability is reached (timeToMaxECigInit), and years until e-cigarettes 
are introduced in the model (modelBurnIn), are used in by the sigmoid function to generate e-cigarette incidence by smoking status 
(i.e., never, current, and former smoker). This is done in order to approximate current e-cigarette use by smoking status as reported in 
recent literature.12–14 

eFigure 3 shows the e-cigarette initiation sigmoid curve for former, never, and current smoker initiation rates by year using baseline 
parameter values. After the year 2016, the probability of e-cigarette initiation by smoking status remains constant through the end of 
the model in 2070. Current smokers have the highest probability of e-cigarette initiation and serve as the reference group for e-
cigarette initiation among former smokers and never smokers. For each time point on the sigmoid curve, if an individual is a never 
smoker, the probability of initiating e-cigarette use for that individual is the e-cigarette initiation rate on the curve divided by the 
parameter divECigNeverSmoker (equal to 15 in our baseline model). This divisor may be an overestimate given recent data showing 
never smokers are approximately 30 times less likely to use e-cigarettes than current smokers.13 Nonetheless, in the context of our 
results, this assumption is conservative (i.e., allows for larger negative effects of e-cigarettes on smoking initiation relative to 
baseline). Results from additional sensitivity analyses conducted on these parameters are available upon request. Similarly, current e-
cigarette prevalence among former smokers was reported as 6 times less than that of current smokers – if an individual is a former 
smoker, the probability of initiating e-cigarette use is the e-cigarette initiation rate for smokers, divided by the parameter: 
divECigFormerSmoker. For simplicity and because of scarce data on e-cigarette cessation patterns, we assumed e-cigarette cessation 
rates to be similar to traditional smoking cessation rates (e.g., 0.026 at baseline, see eTable1). 
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3.2 Smoking Cessation and Initiation Rates 

We calibrated the model using smoking cessation data from the 1970 birth cohort, the most recent cohort with all of the data available 
through the Cancer Intervention and Surveillance Modeling Network (CISNET) website.15 Though we relied on 1970 birth cohort quit 
rates for the main analysis, we also assess CISNET estimates of age-specific (ages 18-85) smoking cessation rates for those born in the 
years 1940, 1950, 1960, and 1970, corresponding to the parameter smokeQuitCohort. In particular, 1940 corresponds with 
smokeQuitCohort = 1, 1950 with smokeQuitCohort = 2, etc. Earlier birth cohorts generally have lower smoking cessation rates, so we 
performed additional simulations to examine smoking prevalence outcomes resulting from these lower smoking cessation rates as part 
of our sensitivity analyses. We found that the 1970 cohort had cessation rates that generated smoking prevalence levels for 2013-2070 
that most closely resembled available projected adult smoking prevalence data.16–18 Using cessation rates from birth cohorts earlier 
than 1970 combined with recent smoking initiation estimates generated higher than expected smoking prevalence values than those 
reported by NHIS19 and other studies16–18. The lower panels in eFigures 4 – 9 present sensitivity analyses of birth cohort effects on 
smoking prevalence (i.e., the parameter “smokeQuitCohort”).  

We used survival analysis (i.e., the cumulative hazard function) to calculate smoking initiation rates based on reported NHIS smoking 
prevalence among 18-24 year olds from 1997 to 2013. Our calculation assumes that the smoking initiation rate for those ages 0-12 
years old is zero. This is consistent with research indicating that smoking uptake can occur as early as age 12, with most initiation 
occurring by age 18.20–22 The survival and hazard equations are as follows: 

𝑆 𝑡 = 𝑒!! ! , where 𝐻 𝑡 =    𝜆 𝑢 𝑑𝑢!
! , and 𝑡 denotes age 

ℎ 𝑡 =   −
𝑆! 𝑡
𝑆 𝑡

 

We assume a smoking initiation of 0 from age 0 to 12, and a constant rate from that age forward (λ) until age 30, when smoking 
initiation is disallowed, such that: 

𝐻 𝑡 =   𝜆 𝑡 − 12  

𝑆 𝑡 = 𝑒!! !!!"  

Therefore: 

𝜆 =
− log S t
𝑡 − 12

 

We then performed simple linear regression on these values to project smoking initiation rates into the year 2027 (30 years after model 
initialization), after which initiation rates remain constant through 2070. These decisions were made to best approximate historical 
estimates and future projections15,17,23 of smoking prevalence in the US. eFigure 2 presents the regression line, along with the 
corresponding slope and intercept values used to project future smoking initiation rates.  

3.3 Death and “Birth” Rates 

Mortality rates for smokers and former smokers are determined by using reported values of relative risk of death among current 
(smokerDeathRiskRelative) and former smokers (formerSmokerDeathRiskRelative) compared to never smokers. We used data from 
the US Census, the Human Mortality Database, and the Lee-Carter method to calculate age- and year- specific death rates among 
never smokers24–27. In order to achieve population equilibrium and to approximate observed prevalence for current and former 
smoking, we used an annual birth rate of 14.2 per 1,000 persons28 (i.e., replacement of 18 year olds in the model) and examined a 
range of values for relative risks of all-cause mortality for current and former smokers. We determined the relative risk for all-cause 
mortality to be 2.9 for current smokers and 1.5 for former smokers. For example, in our model, a 19 year never smoker in 1998 has a 
0.000895 probability of death. For a 19 year old never smoker, this probability of death is 0.0025955.24 These values are within 95% 
confidence bounds of all-cause mortality for smokers and former smokers reported by Freedman et al.29, and Lynch et. 
al.30,respectively.   

3.4 E-Cigarette Effects 

The magnitude of the effect of e-cigarettes on smoking cessation and smoking initiation are driven by parameter values 
dualUseQuitMultiplier and ecigSmokeInitInc which range from 0.0 to 3.0. These values are multipliers applied to baseline annual 
probabilities of smoking cessation or initiation. Values above 1 increase smoking initiation or smoking cessation probabilities relative 
to baseline values. Likewise, values below 1 decrease smoking initiation or smoking cessation probabilities relative to baseline. 
Baseline probabilities were taken directly from CISNET data by cohort.31 These values are presented as percentages in the main paper 
for simplicity (i.e. 100% decrease in value to 200% increase in value). For example, a value of 1 is equivalent no decrease or increase 
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to smoking initiation or cessation, a value of 1.5 is equivalent to a 50% increase to smoking initiation or cessation, and a value of 0.85 
is a 15% decrease to smoking initiation or cessation.  

eSection 4. Model Outcomes 

4.1 Model Validation 

Our study objective was to estimate the effects of e-cigarettes on smoking prevalence relative to baseline projections of smoking 
prevalence in the absence of e-cigarettes. All aspects of this model are approximations of potential effects given the current state of 
knowledge on smoking and e-cigarette use. We reviewed a range of studies on patterns of e-cigarette use and validated model 
outcomes against e-cigarette prevalence estimates between 2010 and 2014 (see eTable 3). A large proportion of our estimates fell 
within 95% confidence intervals reported in one or more studies.12,13,32,33 eTable 3 provides model generated outcomes compared to 
data sources available at the time of model creation. The majority of our baseline smoking estimates are within the 95% confidence 
intervals for NHIS reported smoking prevalence from 1997 to 2013, with the exception of 2002. Our model prevalence estimates for 
2002 were slightly lower than that reported by NHIS. We speculate that this lower estimate is primarily due to increases in tobacco 
product marketing occurring between 2001 and 2002 that this model does not account for. However, our smoking prevalence 
estimates return to the NHIS 95% confidence interval bounds after 2002. We projected a smoking prevalence of 12.8% by 2070—
consistent with an upper level projection of a recent IOM report on raising the minimum age of cigarette smoking26, and comparable 
to projected smoking prevalence by 2050 as estimated by Vugrin et. al.17 

To illustrate the extreme worst- and best-case scenarios of e-cigarette use effects on smoking prevalence, we projected estimates of e-
cigarette use prevalence such that baseline estimates of e-cigarette effects (harm-reducing or harm-inducing) are likely overestimates 
(See Figure 1 in main paper). Pending additional observational data, e-cigarette use may increase beyond the scenario extremes 
examined in our study, though they may also fall short of our e-cigarette prevalence estimates. Given the possible overestimation of e-
cigarette prevalence, we explored how e-cigarette use prevalence could ultimately affect our outcomes (See Figure 4 in the main 
paper). In addition, we mapped initiation effects of e-cigarettes on smoking behavior against the prevalence of e-cigarette use among 
never smokers, as presented in the Results section of our main paper.  

4.2 Sensitivity Analyses 

In eFigures 4 – 9, we show sensitivity analyses for different e-cigarette initiation and cessation effect levels varying the following 
parameters: maximum age of e-cigarette initiation (ageStopECigInit), years until maximum e-cigarette initiation is reached 
(timeToMaxECigInit), annual probability of e-cigarette cessation (eCigProbMax), the slope of the sigmoid function for e-cigarette 
initiation (ecigNetSlope), e-cigarette initiation rate divisor for never smokers relative to current smokers (divECigNeverSmoker), and 
smoking cessation rates across different birth cohorts (smokeQuitCohort). The colored bar legend represents smoking prevalence, and 
axes are labeled according to the parameters used within the model (See eTable 1). The largest differences in smoking prevalence are 
generated by experiments examining age- and year- specific smoking cessation probabilities by birth cohort. This property is 
discussed further in the main paper. The remaining differences in smoking prevalence generated from the entire set of sensitivity 
analyses range from a 0.01 to 0.6 absolute difference in smoking prevalence. Due to the comparative nature of the model (i.e., e-
cigarette effects on smoking behavior compared to the baseline model), the differences in absolute smoking prevalence from these 
sensitivity analyses are negligible in the context of our study, and do not affect our conclusions. In short, we are more concerned with 
the directionality and magnitude of the relative outcomes, and not the absolute differences of these outcomes. In eFigure 10, to better 
understand the range of outcomes that our model generates resulting from our assumptions, we explore the sensitivity of smoking 
prevalence in our model at the extreme values of all combinations of the following model parameters (as performed in eFigures 4 – 9): 
ecigNetSlope, timeToMaxECigInit, eCigProbMax, and their interaction with the maximum age of e-cigarette initiation allowed in the 
model on the horizontal axis (ageStopECigInit). From this analysis, we find that extreme variations and combinations of our 
parameters do not change the smoking prevalence values substantially by ageStopECigInit at baseline or when e-cigarettes only 
increase smoking initiation rates. However, we observe a slight downward trend in smoking prevalence by ageStopECigInit, and 
greater minimum and maximum smoking prevalence differences when e-cigarettes result in greater smoking cessation rates. The 
results of this analysis suggest that our baseline model outcomes and results are conservative estimates of the relative advantage of e-
cigarette cessation effects over e-cigarette initiation effects. In other words, the downward trend by ageStopECigInit indicates that we 
would observe even lower smoking prevalence (even at the extreme values of other parameters) than we report in our results when 
allowing individuals over the age of 30 to initiate e-cigarettes. Although we believe it is likely that older adults over the age of 30 
could use e-cigarettes as a smoking cessation aid, the results from this sensitivity analysis indicate that allowing individuals in our 
model to initiate e-cigarettes after the age of 30 would reinforce our findings of the relative strength of e-cigarette cessation effects 
compared to e-cigarette initiation effects on smoking behavior.  MANUSCRIP
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eTable 1 Baseline Model Parameters* 

Parameters Values Description 
ecigNetSlope 0.20 Slope of sigmoid function governing e-cigarette initiation 

dualUseQuitMultiplier 1.0 

Multiplier applied to baseline smoking quit rates for dual users. While this is set 
to 1.0 (i.e., no effect) in the baseline model, this is an experimental parameter 
that takes a range of values. Figure 3, Figure 4, and eSection 4.2 of this 
supplement provide results for these experiments. 

smokerDeathRiskRelative 2.9 Relative risk of mortality for smokers compared to never smokers 
formerSmokerDeathRiskRelative 1.5 Relative risk of mortality for former smokers compared to never smokers 
eCigProbMax 0.23 Maximum probability of e-cigarette initiation of current smokers 
modelBurnIn 12.0 Number of years until e-cigarettes are introduced (1997-2009) 
ecigQuitProb 0.026 Annual probability of e-cigarette cessation 

ecigSmokeInitInc 1.0 

Multiplier on baseline smoking initiation rates among e-cigarette users. While 
this is set to 1.0 (i.e., no effect) in the baseline model, this is an experimental 
parameter that takes a range of values. Figure 3, Figure 4, and eSection 4.2 of 
this supplement provide results for these experiments. 

smokeQuitCohort 4.0 CISNET smoking cessation rates based on cohort.† Here, cohort 4.0 is 
equivalent to the 1970 birth cohort 

divECigNeverSmoker 15.0 E-cigarette initiation rate divisor for never smokers 
divECigFormerSmoker 6.0 E-cigarette initiation rate divisor for former smokers 
timeToMaxECigInit 7.0 Time (in years) to maximum e-cigarette initiation rate after their introduction 
ageStopECigInit 30.0 Maximum age of e-cigarette initiation 
*Parameter values are those used in the baseline model calibrated to e-cigarette use prevalence among never, former, and current
smokers in 2010 and 2013, and adult smoking prevalence from 1997 to 2013. Note: We use parameter variable names in the model 
pseudo code. 

†See eSection 3.2 Smoking Cessation and Initiation Rates for additional information. 

eFigure 2. Smoking initiation probabilities generated by the cumulative hazard function, using linear regression to project initiation 
rates by year. 
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eTable 2. Model equations and parameters 

Variable and 
Calculation Method Function Description 

smokingInit -0.0006*MIN(time,25) + 0.024 The probability of becoming a smoker 
dependent on the model time step (year) 

Survival rates by prevalence (calculated from historical prevalence and then fitted to linear function) 

smokingCess Table The probability of quitting dependent on 
the model time step (year) 

CISNET annual smoking cessation probabilities from the 1970 male and female cohort (averaged)15,23 
 
deathRate Table The probability of death dependent on 

the model time step (year) 
US death rates table (past, present, and future projections) using Census data25, the Human Mortality Database24, and the Lee-
Carter method26,27 

birthrate 14.2 per 1000 persons Stable birth rate in the model 

Reported by the CDC in 199728 

smokingPrevAtInit Table 
Age-specific population level smoking 
prevalence in 1997 -- Model individuals 
are initialized at these age-specific levels 

NHIS smoking prevalence values by age groups 18-24, 25-44, 45-64, and 65+ 19 

ecigInitSmoker 

!"#$%&'()*+

!!! -­‐!"#$%&'*$)"*+$!,'-.$   

             where: 

timeVal = time-­‐modelBurnIn * !"
!"#$%&'()*+",-."!

-­‐10  

The probability of a current smoker 
becoming an e-cigarette user dependent 
on the model time step (year) 

Sigmoidal function from the theory of innovations, based in time11 
Model parameters are used within equations that govern transition probabilities between nicotine use states and life-cycle states (i.e., 
age, alive/dead). Note: These equation variable names are also used in the pseudo code; some equation variables are generated from 
parameter values.  

eFigure 3. Sigmoid functions determining the probability of e-cigarette initiation by smoking status. 
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eTable 3. Model generated outcomes compared to data sources 

Note: McMillen et al. and Schmidt et al. define current use as “everyday” or “someday” use of e-cigarettes. Zhu et al. define current 
use as “use of e-cigarettes in the past 30 days.”  

*Color axes in subsequent heatmap figures (eFigures 4 – 9) represent smoking prevalence (%) outcomes.

Current E-Cigarette Use Prevalence by Smoking Status (%) 
Year 2010 2011 2012 2013 

Model Population Prevalence  0.8 1.5 2.4 3.4 
McMillen et al. Population Prevalence13 0.3 0.8 2.6 6.8 
Schmidt et al. Population Prevalence12 NA NA NA 1.3 
Zhu et al. Population Prevalence32 NA NA 1.4 NA 

Model Current Smokers 0.1 0.1 8.7 12.6 
McMillen et al. Current Smokers 1.4 5.0 10.8 30.3 
Zhu et al. Current Smokers NA NA 6.3 NA 

Model Former Smokers 0.1 0.2 0.3 1.0 
McMillen et al. Former Smokers 0.3 0.1 1.1 5.4 
Zhu et al. Long Term Former Smokers NA NA 0.2 NA 
Zhu et al. Recent Former Smokers NA NA 6.1 NA 
Model Never Smokers 0.5 1.0 1.5 2.0 
McMillen et al. Never Smokers 0.1 0.1 0.1 1.4 
Zhu et al. Never Smokers NA NA 0.04 NA 

Adult Smoking Prevalence (%) 
Year 1997 2002 2007 2012 
Model Smoking Prevalence 24.2 21.1 19.1 17.6 
NHIS Smoking Prevalence 
NHIS (95% CI) 

24.7 
(24.1,25.3) 

22.5 
(21.9, 23.1) 

19.7 
(19.0, 20.6) 

18.1 
(17.5, 18.7) 
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eFigure 4. Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to individual-level smoking initiation 
probability and does not affect smoking cessation, relative to baseline.* 
 

eFigure 5. Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to individual-level smoking cessation 
probability and does not affect smoking initiation, relative to baseline.* 
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eFigure 6. Smoking prevalence outcomes in 2030: e-cigarette use results in a 20% increase to both individual-level smoking 
cessation probability and individual-level smoking initiation probability, relative to baseline* 

eFigure 7. Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to individual-level smoking 
initiation probability, and does not affect smoking cessation, relative to baseline.* 
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eFigure 8. Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to both individual-level 
smoking cessation probability and smoking initiation probability, relative to baseline.* 
	
  

eFigure 9. Smoking prevalence outcomes in 2060: e-cigarette use results in a 20% increase to individual-level smoking 
cessation probability and does not affect smoking initiation, relative to baseline.* 
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eFigure 10. Smoking prevalence outcomes in 2030 and 2060 using extreme ranges of all parameters by a range of maximum age at 
e-cigarette initiation values (x-axes). Upper Left: Baseline Model. Upper Right: e-cigarette use results in a 20% increase to 
individual-level smoking initiation probability and does not affect smoking cessation. Bottom Left: e-cigarette use results in a 20% 
increase to individual-level smoking cessation probability and does not affect smoking initiation. Bottom Right: e-cigarette use 
results in a 20% increase to both individual-level smoking cessation and individual-level smoking initiation probabilities.  
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eSection 5. Programming 

5.1 Programming Notes 

o Model was programmed using Python
o Model output was analyzed using Python-Pandas and R
o Primary assumptions: No relapse of smoking or e-cigarette use after quitting
o No smoking initiation after age 30
o No e-cigarette initiation after age 30
o Variable names used here are described in the eTable 1 and eTable 2

5.2 Model Pseudo Code 

OBJECT agent; 
       age; 
       current_smoking_status; 
       smoking_history; 
       current_electronic_cigarette_status; 
       electronic_cigarette_history; 
       alive_or_dead; 

PROGRAM smoking_model; 
     initialize agents to 1997 US population age and smoking status demographics; 
     for every year from 1997 to 2075:   
        repeat for all agents in the model: 

if  (age >= 85) or probability of death by age, smoking status, history: 
die; 

if smoker: 
if not e-cigarette user: 

start e-cigarettes at P(ecigInitSmoker); 
quit smoking at P(smokingCess);

if e-cigarette user: 
    quit smoking at P(smokingCess) * dualUseQuitMultiplier; 

quit e-cigarettes at P(ecigQuitProb); 
if former smoker: 

if e-cigarette user: 
quit e-cigarettes at P(ecigQuitProb); 

if not e-cigarette user: 
start e-cigarettes at P(ecigInitSmoker)/divECigFormerSmoker; 

if never smoker: 
if e-cigarette user: 

start smoking at P(somkingInit)*ecigSmokeInitInc; 
quit e-cigarettes at P(ecigQuitProb); 

if not e-cigarette user: 
start e-cigarettes at P(ecigInitSmoker)/divECigNeverSmoker;

             increment age; 
 birth new 18 year olds at set birth rate to maintain stable population counts; 
 calculate model and agent statistics; 

    write model and agent statistics to outputs; 
  clear model and agent statistics for this step; MANUSCRIP
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