| 1        | Supplementary Information                                                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |                                                                                                                                                                |
| 3        | Embryonic type $Na^+$ channel $\beta$ -subunit, SCN3B masks the disease phenotype of Brugada                                                                   |
| 4        | syndrome                                                                                                                                                       |
| <b>5</b> |                                                                                                                                                                |
| 6        | Shinichiro Okata <sup>1, 2</sup> , MD, PhD, Shinsuke Yuasa* <sup>1</sup> , MD, PhD, Tomoyuki Suzuki <sup>1, 3</sup> , MD, PhD, Shogo                           |
| 7        | Ito <sup>1</sup> , MD, Naomasa Makita <sup>4</sup> , MD, PhD, Tetsu Yoshida <sup>5</sup> , PhD, Min Lin <sup>2</sup> , PhD, Junko Kurokawa <sup>2</sup> , PhD, |
| 8        | Tomohisa Seki <sup>1</sup> , MD, PhD, Toru Egashira <sup>1</sup> , MD, PhD, Yoshiyasu Aizawa <sup>1</sup> , MD, PhD, Masaki Kodaira <sup>1</sup> ,             |
| 9        | MD, PhD, Chikaaki Motoda <sup>1</sup> , MD, Gakuto Yozu <sup>1</sup> , MD, Masaya Shimojima <sup>1</sup> , MD, Nozomi Hayashiji <sup>1</sup> ,                 |
| 10       | PhD, Hisayuki Hashimoto <sup>1</sup> , MD, PhD, Yusuke Kuroda <sup>1, 3</sup> , MD, Atsushi Tanaka <sup>1</sup> , MD, PhD, Mitsushige                          |
| 11       | Murata <sup>1, 6</sup> , MD, PhD, Takeshi Aiba <sup>7</sup> , MD, PhD, Wataru Shimizu <sup>8</sup> , MD, PhD, Minoru Horie <sup>9</sup> , MD, PhD,             |
| 12       | Kaichiro Kamiya <sup>3</sup> , MD, PhD, Tetsushi Furukawa <sup>2</sup> , MD, PhD, Keiichi Fukuda <sup>1</sup> , MD, PhD                                        |
| 13       |                                                                                                                                                                |
| 14       | 1: Department of Cardiology, Keio University School of Medicine, Japan.                                                                                        |
| 15       | 2: Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and                                                                 |
| 16       | Dental University, Japan.                                                                                                                                      |
| 17       | 3: Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya                                                                 |
| 18       | University, Japan.                                                                                                                                             |
| 19       | 4: Department of Molecular Pathophysiology-1, Nagasaki University Graduate School of Biomedical                                                                |
| 20       | Sciences, Nagasaki, Japan.                                                                                                                                     |
| 21       | 5: Division of Gene Therapy, Research Center of Genome Medicine, Saitama Medical University,                                                                   |
| 22       | Japan.                                                                                                                                                         |
| 23       | 6: Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan.                                                                        |
| 24       | 7: Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National                                                               |
| 25       | Cerebral and Cardiovascular Center, Osaka, Japan.                                                                                                              |
| 26       | 8: Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan.                                                                                 |
| 27       | 9: Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan.                                                                   |



## Supplementary Figure 1. Differentiation ability of LQTS3/BrS iPSCs

**A.** Teratoma formation following injection of LQTS3/BrS-iPSCs in immune-compromised NOD-SCID mice. Sections of teratomas were stained with hematoxylin and eosin, and tissues representative of all three germ layers were observed. Scale bars, 100  $\mu$ m. **B.** Immunofluorescence staining for cardiomyocyte markers (cardiac troponin T [cTnT] and actinin) in two control and two LQTS3/BrS iPSC-derived cardiomyocytes. DAPI, 4',6'-diamidino-2-phenylindole. **C.** Time constants of current decay of Na1 current in control- and LQTS3/BrS-iPSC-derived cardiomyocytes, measured by macropatch. Current decay at each potential was fit with a biexponential function; time constants of fast ( $\tau$ f) and slow ( $\tau$ s) components are shown. **D.** Quantitative RT-PCR analyses for *SCN1B* $\beta$  in adult human heart (mixed sample from three men aged 30–39 years), embryonic heart (mixed human sample from 34 male and female embryos at 12–31 weeks gestation), control-iPSC-derived-cardiomyocytes and LQTS3/BrS-iPSC-derived cardiomyocytes. **E.** Quantitative RT-PCR analyses of *SCN1B*, *SCN1B* $\beta$ , *SCN2B* and *SCN4B* in iPSC-derived cardiomyocytes transfected with either scrambled siRNA or siRNA for *SCN3B*.

Supplementary Figure 2. Electrophysiological features of corrected-LQTS3/BrS iPSC-derived cardiomyocytes



**A.** Immunofluorescence staining for stem cell markers (OCT4, NANOG, SSEA4 and Tra1-60) in corrected-LQTS3/BrS iPSC colonies. **B.** Immunofluorescence staining for cardiomyocyte markers ( $\alpha$ Actinin and cardiac troponin T [cTnT]) in corrected-LQTS3/BrS iPSC-derived cardiomyocytes. **C.** Representative action potentials of corrected-LQTS3/BrS iPSC-derived cardiomyocytes showing nodal-, atrial- and ventricular-type morphology. The dashed line indicate 0 mV. **D.** Statistical parameters of action potential duration at 90% repolarization (APD<sub>90</sub>) obtained from LQTS3/BrS and corrected-LQTS3/BrS iPSC-derived cardiomyocytes exhibiting nodal- (n = 19 and 11, respectively), atrial- (n = 4 and 8, respectively) and ventricular-type (n = 7 and 10, respectively) morphology. Where appropriate, data are given as the mean ± SEM. \**P* < 0.05 compared with control. **E.** The peak of ramp currents normalized to the peak current recorded in the same cell in LQTS3/BrS (n= 13) and corrected-LQTS3/BrS iPSC-derived cardiomyocytes (n= 9).

|                            | Maximum<br>upstroke<br>velocity (V/S) | APD 50 (ms)    | APD 90 (ms       | S) Shoot<br>(mv)   | Amplitude<br>(mv) | Resting<br>potential<br>(mV)      | n  |  |  |
|----------------------------|---------------------------------------|----------------|------------------|--------------------|-------------------|-----------------------------------|----|--|--|
| control                    | $\textbf{2.9} \pm \textbf{0.8}$       | $134.1\pm20.7$ | 354.5 ± 53.3     | 3 19.7 $\pm$ 2.7   | $56.2\pm4.9$      | $\textbf{-36.5} \pm \textbf{2.9}$ | 6  |  |  |
| LQTS3/BrS                  | $3.0 \pm 2.4$                         | 174.0 ± 19.7   | $419.9 \pm 30.7$ | 7 $23.9 \pm 1.6$   | $63.2\pm3.2$      | $-39.3 \pm 2.1$                   | 19 |  |  |
| corrected                  | $2.8 \pm 0.7$                         | 153.7 ± 22.2   | 355.8 ± 33.5     | 5 $25.7 \pm 3.3$   | $61.2 \pm 4.7$    | -35.4 ± 2.1                       | 11 |  |  |
| p value (Bonferroni)       |                                       |                |                  |                    |                   |                                   |    |  |  |
|                            | Maximum<br>upstroke<br>velocity (V/S) | APD 50 (ms)    | APD 90<br>(ms)   | Over shoot<br>(mv) | Amplitude<br>(mv) | Resting<br>potential<br>(mV)      | _  |  |  |
| control vs.<br>LQTS3/BrS   | 1                                     | 0.72363 0      | ).98081          | 1 0.               | 89955000          | 1                                 |    |  |  |
| control vs.<br>corrected   | 1                                     | 1              | 1                | 0.71073 1          | .00000000         | 1                                 | _  |  |  |
| LQTS3/BrS<br>vs. corrected | 1                                     | 1 0            | 0.70985          | 1                  | 1                 | 0.70199                           |    |  |  |

Supplementary Table. Electrophysiological characteristics of iPSC-derived cardiomyocytes Nodal type-iPSC-derived cardiomyocytes:

## Atrial type-iPSC-derived cardiomyocytes:

|                            | Maximum<br>upstroke<br>velocity (V/S) | APD 50 (ms)      | ) APD 90 (     | ms)        | Over sl<br>(mv | noot<br>)  | Amplitud<br>(mv) | le Resting<br>potential<br>(mV) | n |
|----------------------------|---------------------------------------|------------------|----------------|------------|----------------|------------|------------------|---------------------------------|---|
| control                    | $\textbf{39.1} \pm \textbf{12.8}$     | $108.8 \pm 12.4$ | $237.4 \pm 1$  | 6.4        | 28.3 ±         | 3.6        | 98.3 ± 2.        | 4 $-69.9 \pm 5.6$               | 6 |
| LQTS3/BrS                  | $10.0 \pm 2.6$                        | $127.9 \pm 7.2$  | 255.0 ± 2      | 21.0       | 30.1 ±         | 0.8        | 89.0 ± 1.        | 4 $-59.0 \pm 1.6$               | 4 |
| corrected                  | 7.6 ± 1.1                             | $141.2 \pm 16.8$ | 244.3 ± 1      | 4.3        | 34.3 ±         | 2.3        | 89.8 ± 3.        | 8 -55.4 ± 1.1                   | 8 |
| p value (Bonfe             | erroni)                               |                  |                |            |                |            |                  |                                 |   |
|                            | Maximum<br>upstroke<br>velocity (V/S) | APD 50<br>(ms)   | APD 90<br>(ms) | Over<br>(1 | r shoot<br>nv) | Am<br>(    | plitude<br>(mv)  | Resting<br>potential (mV)       |   |
| control vs.<br>LQTS3/BrS   | 0.08107                               | 1                | 1              | 1 0.       |                | 0.18203000 |                  | 0.17821                         |   |
| control vs.<br>corrected   | 0.01928                               | 0.38954          | 1              | 0.3        | 6988           | 0.12       | 2422000          | 0.01703                         |   |
| LQTS3/BrS<br>vs. corrected | 1                                     | 1                | 1              | 0.9        | 96459          |            | 1                | 1                               |   |

|                            | Maximum<br>upstroke<br>velocity (V/S) | APD 50 (1      | ms) APD 9      | 90 (ms)    | Ove<br>shoo<br>(mv | er<br>ot<br>7) | Amplitudo<br>(mv) | e Resting<br>potential<br>(mV)    | n  |
|----------------------------|---------------------------------------|----------------|----------------|------------|--------------------|----------------|-------------------|-----------------------------------|----|
| control                    | $15.8\pm3.8$                          | $247.3 \pm 3$  | 0.5 416.7      | ± 24.0     | <b>34.4</b> ±      | 2.5            | 99.3 ± 3.9        | $\textbf{-65.0} \pm \textbf{4.0}$ | 10 |
| LQTS3/BrS                  | $21.8 \pm 10.8$                       | $326.1 \pm 7$  | 4.5 563.7      | ± 57.1     | 37.4 ±             | 1.8            | 97.4 ± 4.0        | $-60.0 \pm 2.8$                   | 7  |
| corrected                  | 8.6 ± 1.6                             | $250.9 \pm 4$  | 0.0 418.0      | ± 29.6     | 39.3 ±             | 1.2            | 93.1 ± 2.9        | -53.8 ± 1.9                       | 10 |
| p value (Bonfe             | erroni)                               |                |                |            |                    |                |                   |                                   |    |
|                            | Maximum<br>upstroke<br>velocity (V/S) | APD<br>50 (ms) | APD 90<br>(ms) | Over<br>(n | shoot<br>w)        | Am<br>(        | plitude<br>mv)    | Resting<br>potential<br>(mV)      |    |
| control vs.<br>LQTS3/BrS   | 1                                     | 0.7474         | 0.02809        |            | 1                  | 1.00           | 000000            | 0.88136                           |    |
| control vs.<br>corrected   | 1                                     | 1              | 1              | 0.31       | 1901               | 0.62           | 2100000           | 0.04073                           |    |
| LQTS3/BrS<br>vs. corrected | 0.34571                               | 0.8129<br>3    | 0.02979        |            | 1                  |                | 1                 | 0.57432                           |    |

Ventricular type-LQT3/BrS-iPSC-derived cardiomyocytes: