

Supplementary Fig. 1: Correlation between motifs with similar DNA binding specificities. A correlation matrix grouping 1,964 motifs recognized by human TFs into 625 clusters using an affinity propagation clustering algorithm. The color scale represents Perason's correlation between the DNA sequence specificity represented by each motif.

Supplementary Fig. 2: Accuracy of motif classification using 1 or 4 GC content groups. DNase-1 peaks in K562 cells were classified as either 'bound' or 'unbound' to 21 TFs using the motif match log-odds score. We computed the area under the receiver operating characteristic curve (AUC) using ChIP-seq data in K562 cells as a gold-standard set, either with or without dividing sequences into 4 separate GC content groups before scoring. The difference between AUCs when dividing sequences into either 1 or 4 separate GC content groups is indicated on the Y-axis. Individual points are shown, and the box-and-whiskers plot denotes the median, 25th and 75th percentile, and maximum values.

Supplementary Fig. 3: Enrichment of motifs in REST ChIP-seq peaks. The -log-10 p-value (Y-axis) as a function of the p-value rank order (X-axis) illustrates motifs enriched in ChIP-seq peaks binding the transcriptional repressor REST. The magnitude of enrichment is shown by the color scale and by the size of each point.

TF	AUC (GC1)	AUC (GC4)	accurancy	Motif Length	GC content
ZBTB7A	0.775	0.687	12.9	14.67±2.52	0.70±0.06
E2F6	0.777	0.7	11.1	11.20±0.45	0.70±0.01
MEF2A	0.81	0.738	9.8	15.64±4.78	0.28±0.04
CTCFL	0.748	0.689	8.6	15.00±0.00	0.80±0.00
GATA2	0.866	0.8	8.2	11.90±3.54	0.39±0.07
SP2	0.846	0.803	5.3	15.67±1.15	0.70±0.06
EGR1	0.812	0.775	4.7	15.00±3.34	0.75±0.06
GABPA	0.753	0.723	4.1	12.43±1.81	0.63±0.03
ELF1	0.771	0.757	1.9	12.12±1.81	0.59±0.05
SP1	0.865	0.852	1.6	12.50±3.33	0.77±0.05
FOSL1	0.863	0.85	1.5	12.00±1.73	0.48±0.01
ZBTB33	0.824	0.814	1.2	13.50±2.12	0.58±0.04
ATF3	0.663	0.657	1	10.00±1.15	0.57±0.08
USF1	0.838	0.833	0.5	12.45±2.50	0.61±0.05
MAX	0.69	0.687	0.4	11.75±2.14	0.61±0.05
REST	0.643	0.641	0.3	17.17±3.07	0.61±0.02
SPI1	0.723	0.722	0.1	16.50±2.17	0.43±0.03
ETS1	0.765	0.767	-0.3	14.44±5.03	0.55±0.05
YY1	0.716	0.726	-1.4	14.25±2.63	0.57±0.05
TBP	0.689	0.744	-7.4	10.80±2.59	0.24±0.10

Supplementary Table 1: Accuracy of motif classification using 1 or 4 GC content groups. Related to the box and whiskers plot (Supplementary Fig. 2). The table shows the TF name, the area under the receiver operating characteristic curve (AUC) for 1 and 4 GC content groups, the differences in accuracy between groups (percent difference), the motif length, and the GC content. Errors associated with the motif length and GC content group show standard errors between different motifs associated with each TF.

TF.Name	Representative Logo	p-value	Enrich*	Rank	Dist.	Top Motif	Top TF	Known Interaction
SRF	ATGOCCATATATGG	<6e-49	60.4	1	0	ATGCCCATATATGG	SRF	
ZNF274	IICAIACIGG_GAGAAA	<5e-37	48.7	1	0	ITCALACTGG~GAGAAA	ZNF274	
REST	Garage CTGTCCarGGTGCTGAA	<=0	48.4	1	0	Garage CTGTCCarGGTGCTGAA	REST	
CEBPB	TICCCAA	<=0	41.7	1	0	TECGCAA	CEBPG	
SPI1	<u>AAAAG_GGAAGT</u>	<2e-66	25.1	1	0	<u>AAAAGeGGAAGT</u>	SPI1	
MEF2A		<3e-06	17.6	1	0	<u>етсТАААААТААСтст</u>	MEF2A	
CTCF	ACCACTAGEIGGCGC.	<1e-128	16.6	1	0	<u>CACTAGGEGGCG</u> C.	CTCF	
MAFF	TGCTGA_TCAGCA_	<1e-52	14.8	1	0	TGCTGA_TCAGCA_	MAFF	
NRF1	ICCCCATCCCC	<6e-130	14.1	1	0	ISCCCATCCCC	NRF1	
USF1	GTCACGIG	<=0	13.5	1	0.1	GTCACGIGAC	ARNTL	
YY1	AA_AIGGC_cc	<6e-267	11.5	1	0	-AA-AIGGC=cc	YY1	
EGR1	TGCGTGGGCGT	<2e-26	11.3	1	0	<u>TGCGTGGGCG</u> T	EGR1	
NFYB		<7e-272	11.1	1	0.1		NFYA	
NFYA		<2e-40	10.9	1	0	GAIIGGETA	NFYA	
ELK1		<1e-06	10.2	1	0		ELK1	
GATA1	GALAA	<=0	10.1	7	0.8	AICAAIT CATIGAT	SOX18	Yes: Murakami et. al. (2004). Kuwahara et. al. (2012)
ZBTB33		<5e-160	10	1	0		BRCA1	
FOSL1		<=0	9.8	1	0.1	AIGACICAT	NFE2	
FOS		<=0	9.6	1	0.1		NFE2	
MAFK		<1e-157	9.5	1	0.1		MAFF	
USF2	GILACGIG	<=0	9	1	0.2	GICACGIGAC	ARNTL	
BACH1		<1e-54	8.7	1	0	Accolution -000	BACH1	
ETS1		<6e-27	7.8	1	0.1		SMARCC2	
ELF1		<9e-51	7.7	1	0		ELF3	
BHLHE40		<2e-88	7.6	4	0		BHLHE41	
JUNB		<7e-147	5.4	1	0.1		NFE2	
JUN		<4e-131	5.4	1	0.1		ATF3	
NFE2		<2e-123	5	1	0.2		BACH1	
MAX		<3e-21	4.7	4	0.2		HES7	
SIX5		<9e-49	4.5	1	0.4		EIS1	
JUND	ACATAA	<6e-30	4.2	1	0.1	CA-AACATAACATAA	BATE3	
GATAZ	CCGGAAGT	<20-155	3.9	11	0.5		MECOM	
	-TGCCC AA_ATGGC	<50.08	3.0	1	0.5	-TGCCC AA_ATGGC		
	_TGACGT	<50.24	2.7	5	0.2	-GATGACGTCATCA	BATE3	
DEV5	GITCLACG	<10.185	2.7	0	0.2	-GATGACGTCATCA	BATES	Vos: Lochamy et al. (2007)
NR2C2	TGACCTTTGACCT	<10-13	2.1	1	0.0	COTTGACCTTTGACCTTTA	NR1H3	
MXI1	GTG_CC_TGGCAAC	<5e-20	2.1	1	0.0	GTT-C-ATGG-AAC	REX5	Possible: Neph et al (2012)
CTCFI	cCAGGcGGCGc	<4e-68	2.2	1	0.2	CACTAGGEGGCGC.	CTCE	
ZNE143	CTGGGA TGTAGT	<2e-07	2.1	1	0.1	ACTACA TOCCA A GC	SMARCC2	
MYC	-CACGTG	<1e-43	2.1	25	0.7	T. GCGCGAAAA. TS	F2F1	Possible: Wanzel et al (2003)
ATF3	GTCACGTG	<2e-33	2.1	1	0.2	GTCACGTGAC	ARNTL	
STAT5A	TTC- GGAA I	<3e-08	1.9	3	0.8	TO CCATATATGG. CA	SRF	Possible: Engblom et. al. (2007)
ARID3A	TTTATT ATT ATTACT	<6e-06	1.9	32	0.7	ATGRATITATTCAT	POU3F2	Yes: Rhee et. al. (2014)
ZNF263	GGAGGA	<1e-40	1.7	6	0.9	-CACCCTTGGGTGC	ZNF423	
SP2	<u> </u>	<3e-47	1.7	20	0.6	CTGATTGGT	NFYA	Yes: Roder et. al (1999)
								· · · · /

Enrich* Dist. p-value 1 20 0 1 1e-10 .05 1

TF.Name	Representative Logo	p-value	Enrich* F	Rank I	Dist.	Top Motif	Top TF	Known Interaction
EP300	G_AGT	<9e-09	1.5 1	69	0.7	TGACCTTGACCT	RORA	Yes: Goodman et. al (2000)
NR2F2	TGASCOST GASCOST		1.4 1		0.4	=etIGACCTTTIGACCTe	RARA	
E2F4	GCGGGAA	<0.0004	1.4 1		0.2		E2F7	
ZBTB7A	<u> </u>	<5e-06	1.3 9	, [0.7	_ATGTCGCGATA_	ZBED1	
TAL1	ASCATCIGT		1.2 1	4	0.7	-GA_AAGAIAAGAIAA	MECOM	
E2F6	GCGGGA	0.01	1.1 1		0.3	<u>GCCGcGAAA</u>	E2F7	
TBP	_CIATAAAA_		1.1 8	19	0.8	TTCCG_CGGAAGT	ELK1	
SP1	<u> </u>	<0.007	1.1 3	3	0.7		FOXI1	Yes: Roder et. al (1999)
MAZ	<u>GEG SEGGAGGESEG</u>	0.05	1.1 3	57	0.8	_ATGTCGCGAIA_	ZBED1	
TEAD4			0.9	5	0.6	ATGCCCATATATGG	SRF	
				Enrich*		Dist.	p-value	
				1		20 0	1 1e-	10 .05 1

Supplementary Table 2: Motifs discovered in 56 ENCODE ChIP-seq datasets. The table shows the ChIP-seq TF name (TF.Name), expected motif logo (Representative Logo), one-sided p-value of enrichment for the expected motif (p-value), enrichment of the expected motif (Enrich), rank of the cluster containing the expected motif (Rank), distance between the expected and most enriched motif (Dist.), most enriched motif logo (Top motif), and TF name corresponding to the most enriched motif (Top TF). The final column denotes evidence for known interactions between the TF analyzed by ChIP-seq and the most enriched motif. Yes denotes known interactions between this pair of TFs, or close family members, and provides the reference. Possible denotes evidence that the ChIP TF is involved in tethering interactions with another TF (though not necessarily the motif discovered).

Supplementary References:

Engblom,D. et al. (2007) Direct glucocorticoid receptor–Stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes Dev., 21, 1157–1162.

Goodman,R.H. and Smolik,S. (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev., 14, 1553–1577.

Kuwahara,M. et al. (2012) The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-[beta] and suppresses TH2 differentiation. Nat. Immunol., 13, 778–786.

Lochamy, J. et al. (2007) CREB and phospho-CREB interact with RFX5 and CIITA to regulate MHC class II genes. Mol. Immunol., 44, 837–847.

Murakami,A. et al. (2004) SOX7 and GATA-4 are competitive activators of Fgf-3 transcription. J. Biol. Chem., 279, 28564–28573.

Neph,S. et al. (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83–90.

Rhee,C. et al. (2014) Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation. Genes Dev., 28, 2219–2232.

Roder,K. et al. (1999) Interaction between the two ubiquitously expressed transcription factors NF-Y and Sp1. Gene, 234, 61–69.

Wanzel, M. et al. (2003) Transcriptional repression by Myc. Trends Cell Biol., 13, 146–150.