Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201600027

Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer

Zonglong Zhu, Chu-Chen Chueh, Francis Lin, and Alex K.-Y. Jen*

Supporting Information

Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Novel Fullerene Cathode Interlayer

Zonglong Zhu¹, Chu-Chen Chueh¹, Francis Lin², Alex K.-Y. Jen^{1,2*}

¹Department of Materials Science and Engineering, ²Department of Chemistry, University of Washington, Seattle, WA 98195, USA

Figure S1. Contact angle measurement of bis- C_{60} , F- C_{60} and hybrid surfactant (bis- C_{60} & F- C_{60}), wherein the contact angle is 68° for bis- C_{60} , 96° for F- C_{60} , and 84° for bis- C_{60} & F- C_{60} .

Figure S2. Cross-section SEM image of the top-performing PVSC in this study.

Figure S3. The EQE spectra and their integrated photocurrent densities of the IPCE spectra of perovskite solar cells without interlayer (None) and with interlayer ((B)F-C₆₀, (C) Bis-C₆₀, and (D) Bis-C₆₀&F-C₆₀)

Figure S4. J-V curves for (A) without interlayer (None) and with interlayer ((B)F-C₆₀, (C) Bis-C₆₀, and (D) Bis-C₆₀&F-C₆₀) which measured by forward (from short circuit to open circuit) and reverse (from open circuit to short circuit) scans. All J-V curves were measured under 100 mW/cm² air mass 1.5 global (AM 1.5G) illumination.

Figure S5. Normalized PCE, of PVSCs without and with using the studied FCIs as a function of storage time in ambient condition (air) with a relative humidity of 85 %.

Figure S6. Measured space-charge-limited *J*-*V* characteristics of the electron-only devices (ITO/ZnO/fullerene surfactants/LiF/Al) under dark conditions.

Figure S8. ¹H NMR spectra of $F-C_{60}$

Figure S9. ¹⁹F NMR spectrum of $F-C_{60}$.

	D13-C60;	1-060	
Mobility (×10 ⁻⁴ cm ² V ⁻¹ s ⁻¹)	20.6	3.2	10.7
Thickness (nm)	100	100	110

Table S1. The estimated SCLC electron mobility of the fullerene surfactants.