# TRPM7-like channels are functionally expressed in oocytes and modulate postfertilization embryo development in mouse

Ingrid Carvacho<sup>1,2,3\*</sup>, Goli Ardestani<sup>4</sup>, Hoi Chang Lee<sup>4</sup>, Kaitlyn McGarvey<sup>4</sup>, Rafael A. Fissore<sup>4</sup> and Karin Lykke-Hartmann<sup>1,2,5\*</sup>

<sup>1</sup>Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.

<sup>2</sup>Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.

<sup>3</sup>Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile.

<sup>4</sup>Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.

<sup>5</sup>Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark

\* Co-corresponding authors: Ingrid Carvacho, icarvacho@biomed.au.dk, phone: +45-87167258, and Karin Lykke-Hartmann, kly@biomed.au.dk, phone: +45-29390558.

# Supplementary Figure S1.

## a. MII eggs



**Figure S1. Modulation of native TRPM7 current by 2-APB in MII eggs. a.** Whole-cell voltage clamp recordings from MII eggs. Current evoked from a voltage ramp from -100 to +100 mV. *Left panel*. 2-APB 2 mM increased the TRPM7-like current in MII eggs (n=5). *Right panel*. 2-APB 100 µM blocked TRPM7 current (n=4).

# Supplementary Figure S2.

#### 2-cell blastomeres



**Figure S2. Naltriben potentiates TRPM7-like currents in 2-cell blastomeres.** Whole-cell patch clamp recordings in blastomeres from 2-cell stage obtained after fertilization. Current evoked from a voltage ramp from -100 to +100 mV in basal conditions (red trace, basal No  $Mg^{2+}$ ), presence of 80  $\mu$ M Naltriben (blue trace) and after Naltriben wash-out (pink trace). n=3.

| Treatment         | # of 2 <sup>nd</sup> PB/2 | # of 2 cell      | # of 4 cell | # of 8 cell | #              |
|-------------------|---------------------------|------------------|-------------|-------------|----------------|
|                   | PN <sup>a</sup>           | (%) <sup>b</sup> | (%)         | (%)         | Blastocysts(%) |
| Control           | 15                        | 11 (73)          | 11 (100)    | 11 (100)    | 9 (81)         |
| Apamin – 1<br>µM  | 26                        | 17 (65)          | 17 (100)    | 16 (94)     | 14 (82)        |
| Apamin – 10<br>uM | 8                         | 7 (88)           | 7 (100)     | 7 (100)     | 6 (86)         |

Supplementary Table S1. Apamin does not inhibit pre-implantation embryo development.

<sup>a</sup>Zygotes were collected 15 h post hCG. One replicate. PB: Polar Body, PN: Pro-Nucleus. <sup>b</sup> 2-cell embryos were evaluated 24 h post-collection, 4-cell embryos at 48 h, 8-cell embryos at 72 h, and blastocysts at 96 h.

| Time of     |                  | 24-h               | 48-h    | 6     | 0-h      | 72       | -h      | 96-h        |
|-------------|------------------|--------------------|---------|-------|----------|----------|---------|-------------|
| observation |                  |                    |         |       |          |          |         |             |
| Treatment   | #                | #2-cells           | # 4-    | # 8-  | # Morula | # Morula | # Early | Blastocysts |
|             | 2PN <sup>a</sup> | - (%) <sup>b</sup> | cells   | cells | (%)      | (%)      | Bl (%)  | (%)         |
|             |                  |                    | (%)     | (%)   |          |          |         |             |
| Control     | 22               | 22 (100)           | 22      | 11    | 11 (50)  | 12 (50)  | 10 (45) | 22 (100%)   |
|             |                  |                    | (100)   | (50)  |          |          |         |             |
| NS8593-10   | 25               | 25 (100)           | 24 (96) | 21    | 0 (0)    | 20 (95)  | 0 (0)   | 20 (80%)    |
| μM          |                  |                    |         | (88)  |          |          |         |             |

Supplementary Table S2. NS8593 delays pre-implantation embryo development to the blastocysts stage of mouse *Trpv3*<sup>-/-</sup> zygotes.

<sup>a</sup>Zygotes were collected 20 h post hCG. Two replicates. PN: Pro-Nucleus. <sup>b</sup> Time of observation to determine cleavage are indicated on top of each column.

| Supplementary Table S3. Waixenicin A negative | tively affects oocyte viability during in-vitro maturation |
|-----------------------------------------------|------------------------------------------------------------|
|-----------------------------------------------|------------------------------------------------------------|

| Treatment                 | # of GVs <sup>a</sup> | $\text{GVBD}^{\text{b}}(\%)$ | MII (%)    |
|---------------------------|-----------------------|------------------------------|------------|
| Control                   | 35                    | 33 (94.2%)                   | 33 (94.2%) |
| Waixenicin A <sup>c</sup> | 63                    | 41 (65%)                     | 0 (0.0%)   |

<sup>a</sup>GV oocytes were collected 48h post PMSG. Three replicates. <sup>b</sup>GVBD: Germinal Vesicle Break Down, MII: Metaphase II eggs. GVBD was evaluated 2 h post initiation of maturation and MII eggs were observed at 12 h post initiation of maturation. Oocytes in the treatment group that failed to undergo GVBD or reached the MII stage lysed and degenerated during culture. <sup>c</sup>Waixenicin A was used at 1  $\mu$ M concentration, which is the minimal concentration required to prevent/reduce [Ca<sup>2+</sup>]<sub>i</sub> oscillations in GV oocytes.