1 Supporting information

A novel technique based on *in vitro* oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish

4	Shao-Lin Xie ^{1, 2} , Wan-Ping Bian ² , Chao Wang ^{1, 2} , Muhammad Junaid ^{2, 3} , Ji-Xing
5	Zou ^{1*} , De-Sheng Pei ^{2*}
6	
7	
8	
9	
10	¹ College of Marine Sciences, South China Agricultural University, Guangzhou, 510642,
11	China
12	² Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
13	Sciences, Chongqing, 401122, China
14	³ University of Chinese Academy of Sciences, Beijing 100049, China
15	*Corresponding authors.
16	E-mails: <u>zoujixing@163.com</u> (J.X.Z), <u>deshengpei@gmail.com</u> (D.S.P) and
17	peids@cigit.ac.cn (D.S.P)
18	
10	
19	
20	

21 Table S1 Toxicity of Cas9 capped RNAs and sgRNAs in oocytes*

	То	tal amo	unt	Fe	ertilizati	on]	Hatching	g
Trials No.	1	2	3	1	2	3	1	2	3
Control	104	112	105	83	87	81	79	85	75
Phenol red	111	124	116	68	74	60	63	69	55
Cas9/sgRNA	118	135	120	72	71	58	58	55	44

*Control represented oocytes stored *in vitro* for 30 min without injection. Phenol red or
Cas9/sgRNA indicated that oocytes were stored *in vitro* for 30 min and then injected with phenol

25 red or Cas9 capped RNAs and sgRNAs, respectively.

26

22

	28	Table S2 Th	e efficiency	of mloxP	knocked	into <i>m</i>	<i>c4r</i> in	zebrafish*
--	----	-------------	--------------	----------	---------	---------------	---------------	------------

	Amount of detection	Amount of knock-in
Oocytes storage injection	25	13
	30	15
	30	14
Normal injection	25	7
	30	8
	30	7

*The experiment was repeated three times. The larvae carrying *mloxP* were detected by PCR at 72

hpf with mc4r T7E forward primer matching mc4r sequence and the mloxP reverse primer

matching the sequence of *mloxP* donor sequence.

Table S3 The amount of mutations in P_0 generation using two different methods*

Number				The a	amount	of mut	tation			
of	ma	c4r	тр	v17	mra	p2b	тс	:3r	ms	tna
detection	nP ₀	sP ₀								
30	25	28	5	26	14	28	10	27	7	27
30	26	28	7	27	12	29	11	28	11	27
30	25	29	5	27	11	27	9	26	11	28

³⁹ *For each gene, the genomic DNAs were extracted from zebrafish tail at random and measured by

40 T7E1 assay. The results of T7E1 assay were confirmed by sequencing analysis. nP_0 and sP_0

41 represented the generations from normal injected zygotes and injected oocytes after storage,

42 respectively.

43

38

No.	Gene		Number of detection	Number of mutations
1	mc4r	nF1	20	14
		sF1	28	27
	mpv17	nF1	17	6
		sF1	20	18
2	mc4r	nF1	24	16
		sF1	26	26
	mpv17	nF1	21	7
		sF1	25	23
3	mc4r	nF1	22	16
		sF1	27	25
	mpv17	nF1	19	7
		sF1	20	18

45 Table S4 The efficiencies of germline transmission of *mc4r* and *mpv17**

47 *nF1 and sF1 represented the embryos from normal injection P₀ and oocytes storage injection P₀,

48 respectively.

49

54	
55	Figure S1. Identification of knocking <i>mloxP</i> gene into the <i>mc4r</i> locus in zebrafish
56	using the novel technique based on <i>in vitro</i> oocyte injection. (a) Sequencing result
57	showed the correct insertion of $mloxP$ in the $mc4r$ locus. PCR fragments were
58	amplified using primer pairs mc4r-T7E-F/mloxp-R (upper panel) and mloxp-F/mc4r-T7E-
59	R (lower panel) from 5 tested embryos for each groups and cloned into the pMD-19T
60	vector for sequencing (4-6 clones/embryo). (b) PCR products from the genomic locus
61	flanking the target site using primer pairs (<i>mloxP</i> - KI-JC-F/ <i>mloxP</i> - KI-JC-R). The WT

amplicons were 234 bp but *mloxP* knock-in amplicons were 270 bp. 1 -5: oocyte

63 storage eggs; 6 -10: normal injection eggs.

<i>mc4r</i> -wt	ATACTACTGGGGGTGTTTGTGGTGTGCTGGGCGCCCTT
<i>mc4r</i> -1	ATACTACTGGGCTGGGCGCCCCTT -16/+1
тс4г-2	ATACTACTGGGGGGTGTTTG
<i>тс4г</i> -3	ATACTACTGGGGGGTGTTTGTGG—GCTGGGCGCCCCTT -3
<i>тс4г</i> -4	ATACTACTGGGGGGTGTTTGT
<i>mpv17</i> -wt	GGCGGGTCTTTGGAGATCTTATCAGGCTCTGATGGCCA
<i>mpv17</i> -1	GGCGGGTCTTTGGAGATCT-GGCCATCAGGCTCTGATG -1/+4
<i>mpv17</i> -2	GGCGGGTCTTTGGAGATCTGGAGATCTGGAGATCTGGA -1/+20
<i>mpv17</i> -3	GGCGGGTCTTTGGAGA -11
<i>mpv17</i> -4	GGCGGGTCTTTGGAGATCAGGCTCTGATGGCCA -5
<i>mstna</i> -wt	TGGATGTAGACTGTGGTTGGCTCCTCAGTCGGAGGTAG
<i>mstna</i> -1	TGGATGTAGACTGTGGTTGGCTCCTCAG AGGTAG -4
mstna-2	TGGATGTAAACTGTGGTTGGCTCCTCAGTCGGAGGTAG -1/+1
mstna-3	TGGATGTAGACTGTGGTTG TCAGTCGGAGGTAG -5
mstna-4	TGGATGTAGACTGTGGTTGGCTCCTCAG—GGAGGTAG -2
<i>mrap2b</i> -wt	TGATTGGCTGTGAGCTGGAAGTGGGCGGGTCTCTGGCAT
<i>mrap2b</i> -1	TGATTGGCTGTGAGCTGGTCTGGCAT -13
mrap2b-2	TGATTGGCTGTGAGCTGGAAGTGGGCCTCTGGCAT -4
mrap2b-3	TGATTGGCTGTGAGCTGG—TGGATAGATGATGTGTGT -2/+15
mrap2b-4	TGATTGGCTGTGAGCTGGAAGTGGTCTCTGGCAT -5
<i>mc3r</i> -wt	CCACAGTATCGTGACCGTACGCAGAGCTCTGGTGGCCAT
<i>тс3г</i> -1	CCACAGTATCGTG GCAGAGCTCTGGTGGCCAT -7
<i>тс3г</i> -2	CCACAGTATCGTGACCGT
<i>тс3г</i> -3	CCACAGTATCGTGACCGTA
<i>тс3г</i> -4	CCACAGTATCGTGACC-CTCCATCCCGCAGAGCTCTGGT -3/+8

Figure S2. Genomic DNA sequencing of mutations induced by Cas9 cleavage at the targeted mc4r, mpv17, mstna, mc3r and mrap2b genes. The positive fragments confirmed by T7E1 assay were inserted into the pMD-19T vector and randomly sequenced. The deleted (-) and inserted (+) nucleotides were shown compared to the wild-type.

- **Figure S3.** T7E1 assay and DNA sequencing of five genes disrupted by the novel
- 78 CRISPR-Cas system based on *in vitro* oocyte injection and storage. (a), (b), (c), (d) and
- 79 (e) were *mc4r*, *mpv17*, *mstna*, *mrap2b* and *mc3r*, respectively.