1	Supplemental materials
2	
3	Bacteroides intestinalis DSM 17393, a member of the human colonic
4	microbiome, upregulates multiple endoxylanases during growth on xylan
5	
6	Kui Wang ^{1,2} , Gabriel V. Pereira ^{1,2,3} , Janaina J. V. Cavalcante ^{1,2} , Meiling Zhang ^{1,2,3} ,
7	Roderick Mackie ^{1,2,3} and Isaac Cann ^{1,2,3,4,*}
8	
9	Energy Biosciences Institute ¹ , Carl R. Woese Institute for Genomic Biology ² , Department of
10	Animal Science ³ , Department of Microbiology ⁴ , University of Illinois at Urbana-Champaign,
11	Urbana, IL 61801, USA
12	

Supplemental Table 1. Primer sequences used in this study.

Gene name	Direction	Nucleotide sequence $(5' \rightarrow 3')a$	
D:Vym10C	Forward	GACGACGACAAGTGCGAGGATAATAAGATGGAATGGGGTAC	
BIAyIIIOC	Reverse	GAGGAGAAGCCCGGTTATTGATCAGCGGGAGTTTCTTCCTC	
$\mathbf{D}; \mathbf{V}_{uv} = 10\mathbf{D}/\Lambda = 12\Lambda$	Forward	GACGACGACAAGGCAGACCCGACTCTAAAAGATATTCTC	
DIAYII10D/AIa43A	Reverse	GAGGAGAAGCCCGGTTAATTCGTATAGTTTCCTGTGGCAT	
D:V.mQA	Forward	GACGACGACAAGCATCCTGTTCAGGAAGACAGTAGTGGG	
ылупал	Reverse	GAGGAGAAGCCCGGCTACTTGATAATCCGGAAATTGCC	
D:Vun5A	Forward	GACGACGACAAGGACGAGACTATTCCTGAGCAGCCG	
DIAYIIJA	Reverse	GAGGAGAAGCCCGGTTAATTTGCTAAGGAGACATTAGCTAT	
	Forward	GACGACGACAAGGTGGACGACAAACCGTTGGCATTCGAAG	
BiXyn10A	Reverse	GAGGAGAAGCCCGGTTATTTTCCAGCCAATCCATCAGCAAAAC	
D'W 1424	Forward	GACGACGACAAGATGAAGAAAGAAAAAAAGATACTTGGTACCCGGAGAT	
B1Xyl43A	Reverse	GAGGAGAAGCCCGGTTAATCCAGTCCTTCAATGGTGACGATCT	
	Forward	GACGACGACAAG GAAGACGGCAGCCGCTTG	
B1Agu6/A	Reverse	GAGGAGAAGCCCGGTTATCTTCTTTCATTCAGCATTTTG	
a Sequences underlined denote the incorporated T4 exonuclease digestion sites from pET-46b Ek-LIC			
16 vector.			
17			
18			
10			
19			
20			
21			
22			
23			
24			
2.			
25			
26			
27			
28			

- Fig. S1 Biochemical characterization of xylan utilization loci. Enzymatic activity reported relative to optimal pH (A) and temperature (B) conditions. Error bars represent standard deviation for three replicates
 - А

Fig. S2 30-min hydrolysis of xylan substrates. The final concentration for each enzyme was 0.5 μM, the
final hydrolysis products were identified and quantified by HPLC, Arabinose (A1), xylose (X1) and xylooligosaccharides (X2 to X6) were mixed and analyzed by HPLC to serve as standards for the assignment
of the released products. Calibration curves were constructed with known concentrations of A1 and X1X6. The concentrations of each sugar were calculated by fitting the peak area into calibration curve.

42 (A) 30-min hydrolysis of xylan substrates (WAX, RAX and OSX) by the five putative endoxylanases.

52 Fig. S2 (B) 30-min synergistic hydrolysis of xylan substrates of multiple endoxylanases with BiXyl43A

53 and BiAgu67A towards WAX, RAX and OSX.

