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S| Materials and Methods

DNA extraction and sequencing. Both B. neritina ovicells and larval samples preserved in RNAlater (Sigma)
were subjected to a DNA extraction procedure previously optimized for tunicate microbiomes (1). Briefly, ovicells
were ground with a mortar and pestle under liquid nitrogen, before being resuspended in 5 mL of 2 mg/mL
lysozyme in TE. Larvae were added directly to 5 mL of 2 mg/mL lysozyme in TE. In both cases, extractions were
incubated at 30 °C, with shaking, for 1 hr. After this time, 1.2 mL 0.5 M EDTA was added to each tube along with
proteinase K (Qiagen, final concentration 0.2 mg/mL), and the mixtures were incubated at 30 °C for 5 min. After
addition of 650 uL of 10% SDS, the mixtures were incubated at 37 °C with shaking overnight. NaCl (1.2 mL of 5M)
was then added to each tube, along with 1.0 mL of CTAB/NaCl solution (10% CTAB in 0.7 M NaCl), and the tubes
were incubated at 65 °C for 20 min. Mixtures were extracted twice with 1:1 phenol/chloroform, and 1 volume of
isopropanol was added to the aqueous fraction, which was then stored at 4 °C overnight. Tubes were spun down
at 3,220 g for 30 min at 0 °C. Supernatants were carefully removed and 2 mL 70% ethanol in water was added to
each tube, before they were spun down again. Supernatants were removed and tubes were inverted for 20 min,
before 500 uL of TE was added. The tubes were left overnight at 4 °C to allow DNA to dissolve, before extractions
were subjected to repurification by Genomic Tip 100/G (Qiagen), according to the manufacturer’s instructions.
TruSeq (lllumina) libraries were prepared for both AB1_ovicells and MHD _larvae, with ~300 bp inserts. These
were subjected to sequencing on an lllumina HiSeq 2000, in paired-end 101 bp runs. Sequence yields are shown

in Supplementary Table 1.

RNA extraction and sequencing. Approximately 40 mg of AB1_ovicells tissue was ground with a mortar and
pestle under liquid nitrogen, and then resuspended in 600 uL buffer RLT (Qiagen) containing 6 uL f-
mercaptoethanol. The mixture was homogenized by drawing up and down a sterile 20G needle 15 times, before
being spun down at 16,800 g for 3 min. Total RNA was then purified from the crude lysate using the RNeasy Mini
kit (Qiagen), utilizing the optional DNase step. The resulting RNA was flash frozen in liquid nitrogen and stored at
—80 °C. Prokaryotic and eukaryotic ribosomal RNA was depleted with the RiboZero rRNA removal (Epidemiology)
kit (Epicentre), and eukaryotic polyadenylated transcripts were depleted with poly-T beads. RNA in the resulting

eluate was recovered and purified with Agencourt RNA Clean XP beads. Stranded RNAseq lllumina libraries were
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prepared with ~300 bp inserts, and subjected to two lllumina HiSeq 2000 sequencing runs, one paired-end 101 bp

and one paired-end 151 bp. Sequence yields are shown in Supplementary Table 1.

Metagenomic assembly and deconvolution. Raw lllumina reads obtained from sequencing both AB1_ovicells
and MHD_larvae were filtered with Seqyclean (2), using the parameters “-minimum read length 40 -qual 30 30”.
The resulting filtered reads were assembled with SPAdes 3.1.1 (3) using the parameters,’-k 33,55,77 --careful”.
Prodigal (4) was used to call and translate ORFs in contigs obtained from the AB1_ovicells dataset >3 kbp in
length, using the “-m anon” parameter. The resulting translated sequences were used as queries in massively
parallel BLASTP searches against the NR NCBI database, using a custom pipeline (5) designed to run parallel
blast jobs on a distributed grid using HTCondor (6). Raw blast table outputs were processed with MEGAN (7) to
yield NCBI taxonomy IDs for each ORF. These were used to assign taxonomy classifications to parent contigs
based on majority vote of component ORF taxonomy IDs, prioritizing in descending order of taxonomic
rank/specificity (i.e. species-level classifications were counted, if they were present, before more basal taxonomic
levels were considered). Resulting taxonomy tables were used to visualize assemblies in R (8), using the ggplot2
package.

Quality filtered paired-end lllumina reads from the MHD_larvae dataset were aligned with Bowtie 2 (9) to
all AB1_ovicells contigs >3 kbp that were classified as belonging to the kingdom Bacteria, using the “--very-
sensitive” end-to-end read alignment option. The coverage of each contig in the resulting alignment was
examined using the BedTools (10) component CoverageBed. Contigs with >1x MHD_larvae read coverage were
separated and examined in R and found to comprise of two groups of contigs with different coverage and GC
content (Supplementary Figure 4). These groups were separated in R with normal mixture modeling using the
package mclust (11). One of these groups was found by single copy marker analysis (see below) to be a
complete bacterial genome assembly identified as Candidatus Endobugula sertula due to the presence of bry
pathway components and on taxonomic grounds. The other group contained a paucity of bacterial markers and
likely consisted of mis-assigned host contigs.

The remaining AB1_ovicells contigs with <1x MHD_larvae read coverage were examined for additional
bacterial genomes. Bacterial single copy marker genes were detected using HHMer3 (12) with an HMM database

constructed from the set of PFAM accessions recently used by Rinke et al. to assess the genome completeness
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of divergent single-cell genomes (13). HMM results were filtered using the cutoffs used by Rinke et al. (14) and
contigs containing marker genes were annotated in the previously constructed taxonomy table. Contigs containing
single copy markers were separated in R, and subjected to normal mixture modeling with the mclust package (11)
to yield 11 clusters. Contig sets belonging to each cluster were separated and assessed for genome
completeness (13). These cluster classifications were used to assist in the binning of other contigs by
tetranucleotide frequency analysis (15) using ESOM (16) (Supplementary Figure 7). After tetranucleotide
frequencies for all contigs were calculated and processed in ESOM, bins were constructed such that all marker-
containing contigs were included, capturing other contigs with similar tetranucleotide frequencies. In some cases,
clusters identified by normal mixture modeling did not form discrete groups on the ESOM-map. In these cases,
outliers were excluded. The resulting genome assembly bins were subjected to an iterative assembly protocol,
where the raw (unfiltered) HiSeq reads were realigned to contigs with Bowtie 2 (9) using the parameters ,”--end-
to-end --very-sensitive --no-discordant --no-unal”, followed by reassembly of all aligned reads and their pairs
except for unpaired reads that aligned more than twice the library insert size from the ends of contigs. Only three
genome bins (AB1_chromatiales, AB1_phaeo and AB1_rickettsiales) were significantly improved by this

procedure (Table 1, Main Paper, and Table S6).

PCR amplification and screening to confirm connectivity between contigs. Primers (Table S4) were
designed to have an annealing temperature of ~55 °C manually and using and the Primer3 algorithm (17) to test
various aspects of genomic assemblies. For a 10 pL reaction matrix the following volumes and concentrations of
each component were used: 5 pL 2x KOD Buffer, 2 L 2 mM dNTPs, 0.2 uL KOD Xtreme Hot Start DNA
Polymerase (Novagen), 1 uL 3 uM forward primer, 1 uL 3 pM reverse primer, and 0.8 puL template. Reactions
were carried out on a Bio-Rad C1000 Touch Thermal Cycler in 8 vial 200 uL strip tubes using a thermocycle
program consisting of 94 °C for 2 min, then 35 cycles of (98 °C for 10 s, 55 °C for 30 s, custom extension time [1
min per kbp expected product] at 68 °C), then 68 °C for 10 min with an indefinite hold at 12 °C upon thermocycle

completion.

Bacterial genome annotation and RNAseq alignment. RNAseq sequencing data was filtered with Seqyclean,

using the parameter “-polyat”. The resulting filtered reads were aligned with Bowtie 2 (9) to contigs in each
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bacterial genome bin using the end-to-end alignment options “--very-sensitive --no-discordant --no-unal”. To
investigate the apparent intervening sequence in the AB1_lowgc 16S rRNA gene, the alignment was repeated
with the gap-aware aligner Tophat2 (18) using the parameters “--b2-very-sensitive --library-type fr-firststrand”. The
AB1_lowgc 16S rRNA region was also aligned to a structural model of the bacterial small ribosomal subunit using
SSU-Align (19) (Supplementary Figure 23). For functional annotation, fasta files containing the sequences of
contigs classified into their respective bins were annotated with the Prokka pipeline (20). For AB1_lowgc, the
genbank file generated by Prokka was combined with RNAseq alignment files in Geneious (Biomatters Ltd.) to
visualize transcript abundance. Reads aligned to each ORF were counted in Geneious, and for each gene
normalized RPKMO (reads per kilobasepair of gene per million reads aligning to annotated ORFs in the

AB1_lowgc genome) (21) values were calculated.

Construction of assembly phylogenetic trees. AMPHORA (22) was used to scan genome assemblies for
phylogenetic marker genes, which were extracted and manually examined to resolve instances of multiple hits.
The marker genes were individually aligned to the internal reference database supplied with AMPHORA. The set
of individual marker alignments were filtered such that only reference genomes with >75% of the marker genes
were retained, and then marker genes represented in <75% of these genomes were removed. The marker
alignments were concatenated, and residues not aligning to AMPHORA’s HMM models, signified by lowercase
residues in the resulting alignment file, were removed from the alignment. Trees were then constructed with
FastTree 2 (23) using the parameters “-gamma -slow -spr 10 -mlacc 3 -bionj”. After FastTree 2 runs were
complete, accession numbers were substituted for strain designations according to entries in the RefSeq
database. All trees were rooted arbitrarily at the divergence of the phylum Deinococcus-Thermus and other
bacteria, as others have done previously (22). Trees were manipulated using the Interactive Tree of Life server

(24).

Construction of 16S rRNA phylogenetic trees. For AB1_phaeo, AB1_endozoicomonas and AB1_endobugula,
16S rRNA sequences for all type strains in the same order suggested by taxonomic classifications of contigs in
the respective genome bin were downloaded from the Ribosomal Database Project (RDP) website (25), in aligned

format. Because AB1_div, AB1_rickettsiales and AB1_lowgc showed inconsistent contig taxonomy classification
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at the order level, comparison sequences were selected based on inferences from marker gene alignment trees
(see above). These were downloaded from the SILVA database (26), as this database contains putative
classifications for many sequences from uncultured sources in the PVC superphylum, candidate division NPL-
UPA2 and the SAR11 clade. Sequence sets were uploaded to the RDP website for alignment, and the results
were inspected manually in ClustalX and trimmed. FastTree 2 (23) was used to construct the trees, using the

parameters “-slow -spr 5 -mlacc 3 -gamma -gtr -nt”, and manipulated using the iTOL server (24).

Taxonomic assignment of genome assemblies. Taxonomic assignments (Table 2, Main Paper) were based
on 16S rRNA sequence, where available. These sequences were used as queries in BLASTN searches against
the SILVA database (26) to identify the closest relative. If the BLAST alignment encompassed the full length of
the query sequence, the reported alignment identity was used for classification. Otherwise, the full sequence and
its closest relative identified by BLAST were realigned in Geneious. Taxonomic assignments in relation to the
SILVA or NCBI taxonomy of the closest relative were generated in accordance with the 16S identity thresholds
suggested by Yarza et al. (27), species: 98.7%, genus: 94.5%, family: 86.5%, order: 82.0%, class: 78.5% and

phylum: 75.0%.

Assessment of codon reassignment in AB1_lowgc. We used a procedure recently utilized in a study of stop
codon reassignments in metagenomic sequences (28) to determine whether AB1_lowgc used genetic code 4 (as
the mycoplasmas do) or genetic code 11 (as the phytoplasmas do). Briefly, we ran the AB1_lowgc chromosome
sequence through the gene-finding program Prodigal (4) twice, first using genetic code 4 and then using genetic
code 11. The ORFs assigned with both of these codes showed similar average lengths and cumulative scores
(cscore, Supplementary Table 9), similar to Ca. Phytoplasma australiense. By contrast, the same procedure
carried out on the genome of Mycoplasma pneumoniae showed a large reduction in both average ORF length
and cscore when code 11 was used, versus code 4. Our results therefore do not show evidence of codon

reassignment in the genome of AB1_lowgc.

Analysis of PVC superphylum signature proteins and indels in AB1_div. All instances of the PVC

superphylum signature protein identified by Lagkouvardos et al. (29) were downloaded from the NCBI database,
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and used as BLASTP queries against the predicted proteins of AB1_div. The top hit was used as a BLASTP
query against NR, and the top hit in that search was found to be the PVC signature protein from Candidatus
Kuenenia stuttgartiensis (Accession CAJ71823.1). Marker genes with characteristic insertions or deletions in the
PVC superphylum as well as signature proteins for the phylum Chlamydiae identified by Gupta ef al. (30, 31) were
downloaded from the NCBI database and used as BLASTP queries against the predicted proteins of AB1_div.
Putative hits were examined to determine if they were true homologs of the relevant gene, then aligned with the
entire set in ClustalX (using the BLOSUM protein weight matrix), to determine if the AB1_div protein shared

certain insertions or deletions.

Amplicon sequencing. A ~430 bp section of 16S rRNA genes was amplified from DNA extracts using primers S-
D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 (38) (Supplementary Table 4) with additional custom 5" ends
specific to each sample. This custom section included MiSeq adapter sequences and a sample-identifying
barcode sequence. Pooled amplicons were sequenced on an lllumina MiSeq instrument in a 2 x 250 bp paired-
end run, expected to yield overlapping reads. Demultiplexed sequence read pairs were joined with Flash (32) and
analyzed with QIIME (33). For downstream analysis, OTUs that did not have abundance >1 read in at least one
sample were removed. Abundance of specific bacteria were measured by identifying OTUs that had 98.7%

identity to the assembled or Sanger sequence.

Functional analysis of metatrascriptome data. Translated predicted protein sequences from the annotations of
the AB1_lowgc genome bin were used as queries in BLASTP searches against the NR database (see
Metagenomic assembly and deconvolution, above). The resulting BLAST result table was used as input to
MEGAN (7), which was used to assign KEGG functional categories to protein sequences. KEGG trees were
uncollapsed two levels in MEGAN, and all assignments except for “Organismal systems” and “Human diseases”
were exported to a csv file (with the columns “Read name” and “KEGG name”). Pre-calculated RPKMO values
and the MEGAN csv table were used to calculate proportions of the bin’s transcriptome that corresponded to each
KEGG category. Where multiple KEGG categories were assigned to one predicted gene, that gene’s RPKMO

value was split equally among the assigned categories.
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Supplementary Figure 1: Micrograph showing the morphology of zooids and ovicells in B. neritina colony.
The colony consists of clonal zooids specialized for feeding, substrate attachment and reproduction. Feeding
zooids capture suspended particles from the water through movement of their lophophore. Reproductive zooids
hold a fertilized embryo inside an ovicell until the mature larva is released. The adult animal is covered in a
protective layer of chitin, but the larvae are undefended except for chemical defenses (the bryostatins) produced

by a vertically transmitted symbiont, Candidatus Endobugula sertula.
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Supplementary Figure 2: Overview of metagenomic assembly and deconvolution process.

Overview of assembly and deconvolution process. 1. Paired-end lllumina reads, obtained from AB1_ovicells DNA,
were assembled, and contigs <3,000 bp were discarded. 2. ORFs were called, translated, and used as queries in
a BLASTP search against the NCBI database. The BLAST results were used to assign preliminary taxonomy to
contigs. 3. Paired-end lllumina reads, obtained from MHD _larvae DNA, were aligned to AB1_ovicells contigs
classified in step 2 as belonging to the kingdom Bacteria, in order to identify conserved symbiont and host
sequences. 4. Bacterial contigs from AB1_ovicells that were not shared with MHD _larvae were searched for
bacterial single-copy marker genes (13). Contigs containing markers were automatically clustered using normal
mixture modeling (11). These clusters were used to assist binning of additional contigs based on tetranucleotide

frequency.
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Supplementary Figure 3: Initial processing of AB1_ovicells metagenome. A. View of a portion of the
unprocessed metagenome. B. In the first step, contigs with length <3,000 bp were removed. ORFs were called
with Prodigal (34), and the translations were used as queries in BLASTP searches against the NCBI database. C.
Contig taxonomies were assigned from the BLAST results with MEGAN (7) (see Materials and Methods). D.
These taxonomy assignments were used to remove all contigs that were unclassified at the kingdom level or were
classified as belonging to kingdom Eukaryota, which likely comprised of the host genome and other contaminating
eukaryotic organisms.
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Supplementary Figure 4: Simplification of AB1_ovicells metagenome by comparison with MHD_larvae.
Shotgun metagenomic sequence reads belonging to the MHD _larvae sample were aligned to bacterial contigs
from the AB1_ovicells assembly. Contigs with >1x coverage with MHD_larvae reads were identified (A, circled in
black) and separated. Distinct groups of contigs clustered according to coverage and GC% (B). These groups
were assigned automatically using normal mixture modeling (11). Based on assigned contig and ORF taxonomy
(Fig. S5), single-copy marker analysis, marker gene and 16S rRNA phylogeny, groups 1-2 were subsequently
denoted AB1_endobugula (Candidatus Endobugula sertula). Groups 3-6 had mixed taxonomy (Fig. S5), including
many ORFs classified as belonging to kihngdom Eukaryota, and may represent contigs belonging to the host
genome.
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clustered into taxonomically distinct groups. Following normal mixture modeling (11) on the basis of coverage

Supplementary Figure 5: Contigs shared between AB1_ovicells and MHD_larvae are automatically

9-¢ s193sn|9

and GC% (Fig. S4), clusters 1 and 2 contain ORFs predominantly classified as gammaproteobacteria of the order
Alteromonadales, consistent with the known phylogeny of Ca. E. sertula (see top row). By contrast, clusters 3—6

contain ORFs that are predominantly unclassified at phylogenetic levels below kingdom, with little consistency

among classified ORFs (see bottom row).



604

504

GC%

304

204

604

304

204

Non-shared contigs

Assigned phylum
Acidobacteria
* Actinobacteria
Bacteroidetes
* Chloroflexi
+ Cyanobacteria
is - Deinococcus-Thermus
§ - Firmicutes
+ Gemmatimonadetes
+ Planctomycetes
* Poribacteria
*  Proteobacteria
* unclassified
* Verrucomicrobia

Contig size (kbp)
« 200
® 400
@ 600

Coverage

Contigs containing single-copy markers

Assigned phylum
* Actinobacteria
Bacteroidetes
+ Cyanobacteria
« Firmicutes
+ Planctomycetes
« Poribacteria
* Proteobacteria
* unclassified

Contig size (kbp)
. 200
® 400
@ 600

Coverage

Marker contigs, clustered automatically

Normal mixture
modeling cluster

~ ¥

604 .2
-3
<4

50 -5
-6

= -7

Q

O 404 ¢ 8
-9
<10
-1

30
Contig size (kbp)
* 200
204 ® 400
@ 600
0 10 20 30
Coverage

Supplementary Figure 6: Deconvolution of
contigs unique to AB1_ovicells. Contigs unique
to AB1_ovicells were separated (A), and bacterial
single-copy marker genes were detected with the
HMM models used in Rinke et al. (13). Contigs
containing bacterial marker genes (B) were
independently clustered using normal mixture
modeling (11) (C).
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Supplementary Figure 7: AB1_ovicells contigs >3,000 bp in length, classified as bacterial but not found in
MHD_larvae, were searched for bacterial single copy marker genes (see Materials and Methods). The subset
of contigs containing single copy marker genes were clustered with normal mixture modeling (11) (Fig. $2). The
ESOM-map (16) resulting from analysis of the complete set of contigs with and without marker genes is shown
above. Points belonging to marker-containing genes are highlighted, with numbers corresponding to those shown
in Fig. 1, Main Paper, and their ultimate bin names shown. The areas defined by these marker-containing contigs
on the ESOM-map were used to bin additional contigs that did not contain marker genes. Additionally, marker-
containing contigs that showed tetranucleotide composition dissimilar to the rest of the cluster were discarded
from the bin (for example, see cluster 6). The completely assembled AB1_lowgc chromosome (cluster 9) was
included as a control.
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Supplementary Figure 8: Four bacterial genome assembly bins contain ORFs with high taxonomic fidelity,
and the other three have low similarity to known sequences and exhibit low fidelity in the taxonomic
classification of their ORFs. The histograms above show the phylum-level classification of ORFs in each

genome bin. The three divergent genomes (AB1_lowgc, AB1_rickettsiales and AB1_div) are dominated by ORFs

unclassified at the phylum level, with others showing inconsistent phylum-level classification.
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Supplementary Figure 9: Circular map of the AB1_lowgc genome and genome features. Circles correspond
to the following (from outermost): (/) bar graph showing number of BLAST hits when translated ORFs are queried
against the NR database (from 0, inner, to 500, outer). Only 139 out of 610 (22.8%) predicted coding genes had
any BLASTP hits with e-values <1x 10 5; (ii) GC% using a 500-bp window size (scale from 0, outer, to 100%,
inner); (iii) tiles showing the location of predicted noncoding RNA genes; (iv) red heatmap showing the locations
of predicted forward ORFs (outer) and reverse ORFs (inner); (v) plot of GC skew (G - C)/(G + C) using a 500-bp
window size; (vi) tiles showing the location of predicted protein coding genes with assigned functions.
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Supplementary Figure 10: An approximately maximum likelihood tree generated by FastTree 2 from
concatenated single-copy marker gene protein sequences from the AB1_flavo genome assembly and 1,338 other
reference genomes. Bootstrap proportions greater than 70% are expressed to the left of each node as a
percentage of 1,000 replicates.
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Supplementary Figure 11: An approximately maximum likelihood tree generated by FastTree 2 from
concatenated single-copy marker gene protein sequences from the AB1_chromatiales genome assembly and
1,336 other reference genomes. Bootstrap proportions greater than 70% are expressed to the left of each node

as a percentage of 1,000 replicates.
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Supplementary Figure 12: An approximately maximum likelihood tree generated by FastTree 2 from
concatenated single-copy marker gene protein sequences from the AB1_div genome assembly and 1,336 other
reference genomes. Bootstrap proportions greater than 70% are expressed to the left of each node as a
percentage of 1,000 replicates.
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Supplementary Figure 13: An approximately maximum likelihood tree generated by FastTree 2 from
concatenated single-copy marker gene protein sequences from the AB1_endozoicomonas genome assembly and
1,333 other reference genomes. Bootstrap proportions greater than 70% are expressed to the left of each node

as a percentage of 1,000 replicates.
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Supplementary Figure 14: An approximately maximum likelihood tree generated by FastTree 2 from
concatenated single-copy marker gene protein sequences from the AB1_rickettsiales genome assembly and
1,336 other reference genomes. Bootstrap proportions greater than 70% are expressed to the left of each node
as a percentage of 1,000 replicates.
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percentage of 1,000 replicates.
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Supplementary Figure 16: An approximately maximum likelihood tree generated by FastTree 2 based on the
16S rRNA gene in the AB1_div genome assembly and 272 other reference sequences. Bootstrap proportions
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Supplementary Figure 18: An approximately maximum likelihood tree generated by FastTree 2 based on the
16S rRNA gene in the AB1_rickettsiales genome assembly and 691 other reference sequences. Bootstrap
proportions greater than 70% are expressed to the left of each node as a percentage of 1,000 replicates.
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Supplementary Figure 19: An approximately maximum likelihood tree generated by FastTree 2 based on the
16S rRNA gene (without the in the AB1_lowgc genome assembly and 244 other reference sequences. Bootstrap
proportions greater than 70% are expressed to the left of each node as a percentage of 1,000 replicates.



—0.01
X80725 E: i Sh{gella coli ATCC 11775T
D14431 Rh: it

salexigens ATCC35888
D88524 Ahrensia kielensis IAM12618
91 [ FJ594057 Agaricicola taiwanensis CC SBABM117
EU726271 Stappia indica B106
98 —DB88525 ia stellulata 1AM12621
FR828537 Stappia taiwanensis type strain CC SPIO 10
-AJ400704 Pannonibacter phragmitetus type strain C6 19
-AY628423 Labrenzia marina mano18
-AJ878875 Labrenzia alba strain CECT 5094
32 Roseibium denhamense OCh 254
D85836 Roselbmm hamelinense OCh 368

AF513441 N LA33B

-AY486423 Pseudovibrio denitrificans DN34
-AB175663 Pseudovibrio ascidiaceicola F423 NBRC 100514
IN167515 Pseudovibrio axinellae Ad2

DQ280370 DS2
D85834 Rubri cliftonensis OCh 317
EUB57676 R Green
UB8041 icensis Ben101
U88044 A Ben103

Iy strain JA139
HQ1 11526 Gemmobacfer tilapiae Ruye 53
EU313813

FR733676 Gemmobacter aquahlls type strain DSM3857
o0 (X53853 Rhodobacter sphaeroides 2 4
AM421024 Rhodobacter megalophill us type strain JA194
M398152 Rhodobacter johrii type strain JA192 J5Br
0846 Rhodobacter azotoformans KA25
udorhod ineus 1AM12616
imaris HDW 19

AJ605746 R EL
DQ659236 Roseinatronobacter monicus ROS 35
EF554833 Rhodobaca barguzinensis VKM B 2406
AF248638 Rhodobaca bogoriensis LBB1
-AM408117 Rhodobacter wnaykumam |ype strain JA123
DQ342322 R ATCC 33485 KC2138
-AF465833 Albidovulum inexpectatum FRR 10T
D16426 Rhodovulum e|lll7hallnum DSM4868
D16419 Rhodovulum strictum MB G2
EU741680 Rhodovu lum steppense A 20s
icola hg72\1/KM B 2160

teri
AFD30436 Methylamula marina h1 VKM

28

Paracoccus
EU287912 R ilus CC MHSW 1
DQ640643 Wenxinia manna HY34
100 AJ844281 R strain C Ivk R2A 2
GU109478 Rubelllm:crobrum roseum VIM 48858
b aerolatum 57158 9
100 EU878003 YIM B024
FJ265707 Salinihabitans flavidus I1SL 46

Rhodobacteraceae
DQ120728 Donghicola xiar;l%r;enfis YE

AY962295 Citreimonas salinaria CL SP20
-AY639887 Citreicella thiooxidans CHLG 1
= 5 Citreicella marina CK 13 6
Q807220 Litorisediminicola beolgyonensis BB MW24
EF211829 Ponticoccus litoralis CL GR66
U58356 Sagittula stellata

-Y11552 Antarctobacter heliothermus EL 219
HQ336489 Sagittula manna F028 2
FJ875966 Roseivivax lentus S5 5

-AJ877265 Yangla pacifica type s!ralno[():)ﬁ_’>211(()J

75|

B601471 Roseibacterium elongatum .ICM 11
IQ340608 Tropicimonas aquimaris DPG 21

B302379 Tropicimonas isoalkanivorans B51
Rhodovulum
\Y656719 Thioclava pacifica TL 2
100 Q342315 Haematobacter missouriensis CCUG 52307
AF452106 Haematobacter massiliensis Framboise
-AM748926 Rhodcbaz;!er aestuarii type strain JA296

D16428 ATCC11166

-AM745438 Rhodobacter marns type strain JA276

FJ6386 16 Hasllibacter halocynthiae K 2

Jannaschia

-AY926462 Palleronia marisminoris B33
FJ230842 F aestuarii Y26
06863 Maribius salinus CL SP27

DQ675021 Pseudomegena aquimaris SW 255

AB564595 Vadicella arenosi KMM 9024

FJ535354 Celenbacter neptunlus H14
FJ436725 ZX

-AB121782 Thalassobacter stenotrophicus CFPI
631302 Thalassobacter stenotrophicus Igpe straln CECT 5294 55M22
G 22 Roseovarius marinus HDW

INO21667 Litoreibacter meol i MA1 1

U342372 Thalassobacter arenae GA2 M15
-AB518880 Litoreibacter janthinus KMM 3842
AB518881 Litoreibacter albidus KMM 3851 —

Supplementary Figure 20: An approximately maximum likelihood tree generated by FastTree 2 based on the
16S rRNA gene in the AB1_phaeo genome assembly and 232 other reference sequences. Bootstrap proportions
greater than 70% are expressed to the left of each node as a percentage of 1,000 replicates.
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Supplementary Figure 22: Analysis of signature proteins and indels observed in the AB1_div genome
places it in the PVC superphylum. A signature protein of the PVC superphylum (29) was found in the AB1_div
assembly (AB384_00980), and a 36 amino acid insert was found in a SpoVG family protein, previously found to
be specific to the phylum Planctomycetes (30). However, other characteristic Planctomyces inserts - in an ABC
transporter, and in cobyrinic acid acdiamide synthase were not found in AB1_div, suggesting that is a basal
branch of the Planctomycetes lineage, which is consistent with 16S identity (highest identity is 78% to
Planctomyces sequences in the SILVA database). A 3 amino acid insert in RpoB, characteristic of
Verrucomicrobia, Lentisphaerae and Chlamydiae (30) was not found in AB1_div, and 43 signature proteins found
to be specific to Chlamydiae (31) were also not found in AB1_div.



model #pos #bps sequence name

bacteria 1582 480 alignment consensus sequence
“CAG/
v
a-c
a-c
v-u
‘_"UA 1 u"‘“cl
a v Rceacd v e
OCG’A -G e ()
[ - G C U
Il &2 ™o A n A
é—-c c A
uooa
= e - -
" . v_g
Site of 500 bp insert ; Pt
=Ze A=
H H - - A c—-a
in alignment =T - Sze
e-c u G=-vc
A=U G c c A
et gte= e an
—Za AT N Za Fo-u
v—us_ A v N Avaacuuuu & U—G=
a-uY A a Vhrrn s, u—-a
G-c [ Acoyn®,6, s A-uU
lA_uﬂ ‘i “U:I:GA /U:-g
A 2 0=
u A 0.7 Ay u
vA-cuoaad*Cua-vauda buanvadac o R 7o H
Y |||.|:‘|“|“|: ;I”:‘L:I;“”H”l g e 1lu"f,:ﬁi
A - emmy 3 amuge UL g wiane o 2
’ iu/ /ic,\ UGG\\AA\ ey
Ay e Rt o
60( - ")m: (Z 130(\6‘:
A v G [
AN\ - u,6
RS [ AT
c z
P VI b LONI
u A c-c 1 cfac
sig™ v-c arngoy S
a—a 5 N euat
A MU A
u - = AN -
Q@ = A 3 A
H G- CAA G“i’\\uu""‘
[t s LA
uAa &S \y
,/ A ¢ 1 G c \ qcc\\\a c\l
%vis 0, deke ) ; "Ruveacoaaucucae acArO\ oy o
Vel %a, Sz \ acucldiedy RN o2 “% A
- z E W BUU c o AU GUa v A
ut{n}"'-'., "Ag—:\,—'\‘;:\ o X hwu o e hr Toue A n}, &
cuaus® Pacve 1 o~ \Nae = 2 » < g Vigoa
X A [RRE] Rtgy b v A A 2 g
v a e sU¥ca e - c A | Gy~ u 0. %
/ A oy MUr N = 6=¢ " yuGuGeCcUAGGG_. G ¢ vy
X ke At AN A I S®y Wi 2 %% At a
I oA \\ua‘ - L -of oAt ve LU, Cq—‘;
AccavsPcccal® \M A E ~-c - A% %
A v u u N ol Ll
2 URLLY i - S i B2 1400=¢ ¢ ATia
U e e aun L 2 ey 2 u i NE
i Azc I vy P A G c o=
3 e-u _ -e v e
G vima - UpA
e=C - -
- up §ZI -
G — CA -G — - -
vZa =5 -~
= a R =
-~ M A &~ -= LEGEND count
A g c-g B -
v /o0 cn0 -0 goa g
(I A A-u * c-¢ Watson-Crick basepair (b 312
! sk P P
ahdg U A c-a
2 ’G;'ICu“" I n',",”!“onc == ¢-u G-U or U-G bp 48
iy EA GRS 38 4 B 9 =
= A A u-o6 A
an CUU AUy =y “."‘10“" o o oo U RO a-A non-canonical bp 30
A-u
A % a-- internal half-gap bp 53
A
A
'/g:g --- internal double-gap bp 31
U=Aa
c=-6
U = 61500 . . .
-- Consensus nucleotides (nt) are displayed, defined
as the most frequent nt at each position.
- Capitalized nts occur in >= 0.75 fraction of sequences
= that do not have a gap at the position.
o
1
e BSuE s VUaavue AUUAAUUG
X e ARl SR ) A
Ny UF U5
Yy - - -aea - c.u1um.iuu
T3 Al ey v
a u
A A
6 G
= A
v-a
u-a
- v
A U=
u-a
v-s
A-U
u-a
A-u
a-vu 5
G G ! o B .
created by the SSU-ALIGN package (http://eddylab.org/software.html)

20\‘/“‘

structure diagram derived from CRW database (http://www.rna.ccbb.utexas.edu/)
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ribosomal subunit, constructed with SSU-Align (19). The location of the 500 bp intervening sequence in the
alignment is shown.
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Supplementary Figure 24: Protein alignment of SpoVG family protein, showing region with 36 amino acid

insert specific for the Planctomyces branch of the PVC superphylum.
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Supplementary Figure 25: Distribution of abundant (> 1%) bacterial OTUs in Bugula neritina, Bugula
Stolonifera and control seawater. The distribution category reflects the number of samples in which a given
abundant OTU appears in B. neritina samples; if the OTU was also found at abundant levels in B. stolonifera
(MHD WB1 and MHD WB4) or the seawater control, then it was placed into those respective categories. 44.2% of
reads corresponding to abundant bacteria in the AB1_ovicells sample were not detected in any other of the
samples subjected to 16S amplicon sequencing.



Supplementary Table 1. Sequence datasets and assembly characteristics

Method of Analysis AB1_ovicells MHD_larvae
16S PCR sequencing
lllumina MiSeq reads (2 x 251 bp), thousands 429 382

Whole metagenome sequencing

lllumina HiSeq reads (2 x 101 bp), millions 404.5 219
lllumina HiSeq reads (2 x 101 bp), Gbp 55.8 221
Total assembly, thousands of contigs 591.8 505.9
Total assembly, Mbp 498.5 435
Total assembly, N50, bp 2,632 1,638
Contigs >3 kbp, thousands 27.6 19.0
Contigs >3 kbp, Mbp 237.6 172.3
Bacterial contigs >3 kbp 6,372
Bacterial contigs >3 kbp, Mbp 56.3

Whole metatranscriptome sequencing

lllumina HiSeq reads (2 x 101 bp), millions 118
lllumina HiSeq reads (2 x 101 bp), Gbp 11.9
lllumina HiSeq reads (2 x 151 bp), millions 357

lllumina HiSeq reads (2 x 151 bp), Gb 53.9




Supplementary Table 2: Bacterial 16S rRNA sequences reconstructed from the AB1_ovicells metagenomic
reads directly by EMIRGE (35) and their assigned genome bin, where they have been joined to assemblies with
PCR and Sanger sequencing. Note: The 16S sequences of AB1_rickettsiales and AB1_lowgc that were
assembled de novo were not reconstructed by EMIRGE, likely because of their divergence from sequences in the

SILVA database (26).

Sequence Relative Best BLASTN hit RDP classification Assigned genome bin
Abundance (accession, identity) (confidence)
41 0.45 Uncultured bacterium Genus: AB1_endozoicomonas
clone BA100-C1-seq Endozoicomonas
(JX280191.1, 97%) (100%)
4019 0.12 Uncultured Genus: Roseovarius
Rhodobacteraceae (99%)
bacterium clone
MD2.45
(FJ403094.1, 96%)
96 0.10 Endobugula sertula Genus: Eionea AB1_endobugula
strain BnSP (99%)
(AF006606.2, 99%)
199 0.089 Uncultured bacterium Genus: Phaeobacter AB1_phaeo
clone SanDiego a7349 (41%)
(KF799885.1, 92%)
128 0.062 Uncultured gamma Genus: Bermanella
proteobacterium clone (33%)
27D24 (GQ274161.1,
96%)
145 0.058 Uncultured bacterium Genus:
clone 5S1 (JF272174 .1, Granulosicoccus
96%) (100%)
281 0.041 Uncultured organism Genus: Parachlamydia AB1_div
clone ctg CGOFF0066 (27%)
(DQ395743.1, 91%)
164 0.041 Uncultured Genus: Nitritalea
Sphingobacteriales (11%)
bacterium clone B255
A11 (EF092220.1,
96%)
233 0.033 Ampbhritea sp. Genus: Amphritea

MEBIiC05461T 16S
(GU289646.1, 98%)

(100%)



Supplementary Table 3: Automated MaxBin (41) binning results for AB1_ovicells bacterial contigs >3 kbp,
displaying a high number of repeated markers compared to binning based on normal mixture modeling (11) (Main

Paper, Table 1).

Relative Completeness Genome GC No. No.

Cluster Name/Number Abundance (%) size (bp) content Repeated contigs
(%) markers

AB1_bacteria_over3k.001.fasta 23.89 94.40% 4164677 35 8 313
AB1_bacteria_over3k.002.fasta 17.24 44.90% 1007589 21 16 29
AB1_bacteria_over3k.003.fasta 6.04 100.00% 4869462 45 40 399
AB1_bacteria_over3k.004.fasta 412 94.40% 4750895 42 45 483
AB1_bacteria_over3k.005.fasta 293 68.20% 3707167 41 18 514
AB1_bacteria_over3k.006.fasta 2.7 96.30% 5119588 60 13 321
AB1_bacteria_over3k.007.fasta 1.97 38.30% 2772797 34 6 435
AB1_bacteria_over3k.008.fasta 1.78 13.10% 1725527 39 1 237
AB1_bacteria_over3k.009.fasta 1.61 17.80% 2086909 43 6 452
AB1_bacteria_over3k.010.fasta 1.41 57.90% 6393031 51 30 1309




Supplementary Table 4: Primers used in this study

Name Sequence Citation Notes
S-D-Bact-0341-b-S-17 CCTACGGGNGGCWGCAG Klindworth 16S rRNA amplicon sequencing
et al. (38)
S-D-Bact-0785-a-A-21 GACTACHVGGGTATCTAATCC  Klindworth 16S rRNA amplicon sequencing
et al. (38)
AB1_div_F CTAGTTATGTAGTTCTGG This study Detection of AB1_div
AB1_div_R GGCTTTCGAGTCGTAAAAC This study Detection of AB1_div
AB1_lowGC_16S_576F GCTTGTGCGAGATTCCGT This study Detection of AB1_lowgc
AB1_lowGC_16S_730R ACGGATTAGATACCCGTG This study Detection of AB1_lowgc
Bn240f TGCTATTTGATGAGCCCGCGTT Haygood & Detection of Ca. E. sertula
Davidson (AB1_endobugula)
(40)
Bn1253r CATCGCTGCTTCGCAACCC Haygood & Detection of Ca. E. sertula
Davidson (AB1_endobugula)
(40)
EndozoiF TGCGTAGGCGGCTCGTTAAGTT  This study Detection of
AB1_endozoicomonas; Detecting
and sanger sequencing of
connectivity between 16S and
contig
EndozoiR AATTCGCAGGATGTCAAGGCC  This study Detection of AB1_endozoicomonas
Low1 L2 AGGTTTAGCAGAATAAGTTGGA  This study Closing circular AB1_lowgc
chromosome
Low1 64 R2 GGTTTTATAAGCCCTGACCA This study Closing circular AB1_lowgc
chromosome
AB1_phaeo_16S_302F CTCTTTCGCCTGTGATGATA This study Detecting connectivity
between AB1_phaeo 16S and
contig
Phaeo_ribo_546_R CCAAGAAAAATCCATGTCCG This study Detecting connectivity

between AB1_phaeo 16S and
contig



AB1_endoz_5S 105R

AB1_lowcov_5S 608R*

AB1_lowcov_235F*

CCTACTCTCACATGGGGATA This study
ATCGCTTTTACTGCCTAGTT This study
GATTGTAGCTGGTCTGAGAG This study

Detecting connectivity
between AB1_endozoicomonas
16S to contig
Detecting connectivity
between AB1_rickettsiales 16S
and contig
Detecting connectivity
between AB1_rickettsiales 16S
and contig

*Note: We initially referred to the AB1_rickettsiales genome as “AB1_lowcov,” and so these primer names are
derived from the original bin name.

Supplementary Table 5: Presence of universal bacterial 16S primer and probe binding sites in genome bins.
Dashes denote situations where the EMIRGE (35) reconstructed 16S rRNA sequence does not extend to the

primer binding site.

Bin 27F 1492R S-D-Bact-0341-b-2-17 S-D-Bact-0785-a-A- EUB338
(36) (37) (38) 21(38) (39)
AB1_div YES NO YES YES NO
AB1_endozoicomonas - - YES YES YES
AB1_endobugula - - YES YES YES
AB1_rickettsiales YES NO YES YES NO
AB1_lowgc YES NO NO YES NO
AB1_phaeo - - YES YES YES
Supplementary Table 6: Genome bin characteristics, prior to iterative assembly
Bin No. Size N50 Longest Coverage* GC% Completeness No.
Contigs (Mbp) (kpb) Contig (%) Duplicate
(kpb) markers
AB1_chromatiales 352 7.29 34.0 209.5 2.4x 50.4 98.6 2
AB1_rickettsiales 0.400 20.5 61.7 2.3x 21.4 48.9 0
AB1_phaeo 195 4.55 48.9 257 2.9% 60.4 99.3 3

* The coverage quoted here is k-mer coverage reported by the SPAdes assembler, where k = 77.



Supplementary Table 7: Analysis of genetic code in AB1_lowgc

Code 4 Average ORF Code 11 Average ORF
Average ORF cscore Average ORF cscore
length (bp) length (bp)
AB1_lowgc 850 139.1 847 143.2
Ca. Phytoplasma 794 108.8 786 116.5
australiense
Mycoplasma 975 117.1 458 55.9
pnheumoniae
Supplementary Table 8: Genome annotation characteristics
Bin No. No. hypothetical Average CDS No. No. Coding
CDS genes size (bp) rRNA tRNA Density (%)
AB1_endozoicomonas | 3,525 1,490 962 2 41 83.8
AB1_phaeo 4,425 1,882 921 1 40 87.2
AB1_lowgc 610 481 840 2 30 86.4
AB1_rickettsiales 409 186 951 2 38 89.3
AB1_div 1,341 531 1,119 3 88 78.7
AB1_flavo 1,522 1,052 751 0 7 71.7
AB1_chromatiales 6,560 2,797 977 0 39 86.2




