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Supplementary Text

Data used in the Application of LDGM to TCGA Breast Cancer Datasets

Genes involved in differential network reconstruction were extracted from estrogen signaling pathway. Estrogen
signaling pathway (hsa04915) was downloaded from KEGG [1] with 212 interactions connecting 82 genes/TFs.
Here interactions and genes/TFs were extracted from the pathway by KEGGgraph [2]. Totally 420 gene expression
samples from Luminal A and 141 samples from Basal-like were retrieved using the cBioPortal [3, 4]. Expression
levels of 82 genes from Luminal-A subtype and 81 genes from Basal-like subtype are significantly not normally
distributed (Shapiro-Wilk test [5], Benjamini-Hochberg-corrected FDR <0.05). Sample latent correlation matrices
are computed as the inputs for the models.

Principle of majority to infer the source of a differential edge

Here we use a heuristic approach to determine the source given a differential edge. In other words, if we have
identified a differential edge, we would like to decide which group (either Luminal A subtype or Basal-like subtype
in our TCGA data application) is more likely to derive this edge. Recall that A = @ — @7, where ® and
©7F are precision matrices and represent individual networks from Luminal A subtype and Basal-like subtype,
respectively. A represents the differential network between the two subtypes. Let A be an estimator of A by
LDGM. Let (:)l% = ((:)5k) and (:)/{fg = ((:)5k) be estimators of @ and ®% by Glasso with a tuning parameter
A = Ag. Here \;, 1 < k < 30, is selected such that individual networks @ﬁ and @kB gradually grow from empty
networks (k = 1) to complete networks (k = 30). Assume that ¢ — j is an estimated differential interaction
by LDGM, i.e., ﬁij # 0. Then a principle of majority based on Glasso is applied to infer which subtype the
differential interaction ¢ — j only exists or has a much stronger regulatory relationship. More specifically, ¢ — j is
from Luminal A subtype if 7 | 1 (](:)Zk\ > \égkl) >3 (](:)Zk\ < \égkl) and from Basal-like subtype
otherwise.

Note on generating regularization parameter )\

Throughout this paper, we always compared LDGM with other models on a sequence of A to test if advantages
or meaningful biological discoveries of LDGM are consistently observed along the sequence of A. To generate
the sequence of A, we first selected Ap,x Which is the minimum value of 10k, |k| = 1,2, -, such that estimated
differential network is an empty network, i.e., there is no interaction in the network. Then we selected Api, which is
the maximum value of A\yax/ 2k k= 1,2,-- -, such that the estimated differential network is a complete network,
i.e., every pair of genes are connected in the network. Then we generated a sequence of 30 A from Apjp t0 Apax by
equal increment.
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Supplementary Tables

Supplementary Table 1: List of significantly enriched BioCarta pathways (FDR <0.05). Luminal A dataset contains 25 genes
that have a majority (>50%) differential interactions from Luminal A subtype in the reconstructed differential network shown
in Fig. 5C. Basal-like dataset represents 31 genes that have a majority (>50%) differential interactions from Basal-like subtype.

Pathway analysis is performed using DAVID.

Subtype | Term Genes P value FDR
< Trka receptor signaling pathway AKT1, SOS1, PIK3CA, SHC1, PIK3R1 5.99e-07 | 6.58e-04
T Multiple antiapoptotic pathways from IGF- |\, 11 c551 pK3CA, SHCI, PIK3R1 5.40e-06 | 5.94e-03
E 1R signaling lead to BAD phosphorylation
= —

3 tPO:_EN dependent cell cycle arrest and apop- |\, 11 551 PIK3CA, SHCI, PIK3R1 1.27¢-05 | 1.40e-02
I
Cadmium induces DNA synthesis and prolif- |\ \ o)) LRAS MAP2K1, JUN, PLCBI 1.29¢-06 | 1.44e-03
eration in macrophages
o Roles of f-arrestin-dependent recruitment of |\ \ o1 | 1pAS ADCY1, MAP2K1, PLCB1 | 5.40e-06 | 6.05¢-03
= Src Kinases in GPCR signaling
s Aspirin blocks signaling pathway involved in |\ /o) ipAS MAP2KI, GNAIL, PLCBL | 6.82¢.06 | 7.63¢-03
a platelet activation
Signaling pathway from G-Protein families HRAS, ADCY1, MAP2K1, GNAI1, JUN 1.04e-05 | 1.17e-02
Angiotensin Il mediated activation of JNK EGFR, MAPK1 HRAS, MAP2K1, JUN 99605 | 3.350.02

pathway via Pyk2 dependent signaling




Supplementary Figures
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Supplementary Figure 1: AUC under ROC curves of different methods on simulated data under different p, n, p and pi. The
advantage of LDGM becomes more visible when differential networks are more dense with an increased p; regardless of p and
n. Here p stands for the individual network density and p; is the proportion of network-specific edges. Bar height represents
the AUC under an averaged ROC curve over 30 runs. Error bar represents one standard deviation of AUC under 30 replicated
ROC curves.
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Supplementary Figure 2: AUC under precision-recall curves of graphical models on simulated data based on different p, n, p
and pi. LDGM consistently has a much larger AUC than other models. Here p stands for the individual network density and
p1 is the proportion of network-specific edges. Bar height represents the AUC under an averaged precision-recall curve over 30
runs. Error bar represents one standard deviation of AUC under 30 replicated precision-recall curves.
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Supplementary Figure 3: Performance of different methods on the GTEx data (brain and whole

blood data). (A) The

benchmark network with 19 TFs and 12 tissue-specific interactions by setting 7, = 0.95 and r, = 0.8. Red edges are
interactions specific to brain while blue edges are specific to whole blood. (B) ROC curves and (C) Precision-recall curves
to recover the benchmark network. (D) The benchmark network with 30 TFs and 21 tissue-specific interactions by setting
ry = 0.9 and 7, = 0.75. (E) ROC curves and (F) Precision-recall curves to recover the benchmark network.
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Supplementary Figure 4: Performance of different methods on the GTEx data (brain and whole blood data). (A) The
benchmark network with 68 TFs and 78 tissue-specific interactions by setting v, = 0.7 and 7, = 0.6. Red edges are
interactions specific to brain, while blue edges are specific to whole blood. (B) ROC curves and (C) Precision-recall curves

Precision

to recover the benchmark network. (D) The benchmark network with 82 TFs and 98 tissue-specific interactions by setting
ry = 0.6 and 7, = 0.6. (E) ROC curves and (F) Precision-recall curves to recover the benchmark network.
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Supplementary Figure 5: QQ-plot for normality test of gene expression data. Expression data are from 82 genes in estrogen
signaling pathway in Luminal A subtype. Blue data points should be close to the red diagonal line if the expression of the gene
is approximately normally distributed.
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Supplementary Figure 6: QQ-plot for normality test of gene expression data. Expression data are from 82 genes in estrogen
signaling pathway in Basal-like subtype.
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Supplementary Figure 7: Validation of the estimated differential networks by different models. Totally 54 ChIP-seq experiments
on ESR1 from MCF-7 cell line were downloaded from CistromeDB. A putative target gene of ESR1 in MCF-7 cell lines is defined
as a gene where there is at least one ESR1 ChlP-seq peak within 5 kbp of the gene in at least 10 out of 54 ChIP-seq experiments.
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