Supplementary Information

A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor

Ramesh K. Jha^{1,*}, Theresa L. Kern^{1,a}, Youngchang Kim^{2,a}, Christine Tesar², Robert Jedrzejczak², Andrzej Joachimiak^{2,3} and Charlie E. M. Strauss^{1,*}

¹ Bioscience Division, PO Box 1663, Los Alamos National Laboratory, Los Alamos NM 87545, USA

² The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA

³ Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA.

* To whom correspondence should be addressed. Tel: +1-505-431-6193; Fax: +1-505-665-3024; Email: cems@lanl.gov

Correspondence may also be addressed to: Tel: +1-505-412-1666; Fax: +1-505-665-3024; Email: rjha@lanl.gov

^a Equal contributions

SECTION 1: FASTA SEQUENCES

A) pobR intergenic region in Acinetobacter sp ADP1

 $\leftarrow (pobR) CATaacattcaaatccaaaatggttttgtccgatcatcggacagttgtaatgctaatcggataattttga gccttgattatagatgtctttttaatgaggcggtactttaaaaatagaaaatagcaaggatgatgttATG (pobA) \rightarrow$

-PobR operator region is underlined. Inverted repeats are marked with arrows (1).

B) pobR intergenic region adapted for E. coli

← (*pobR*) CATaacattcaaatccaaaatggttttgtccgatcatcggacagttgtaatgctaatcggataattttga gccttgattatagatgtctttttaatgaggcggtactttaaaaatagaaaatagcaagga $_{aagga}^{aagga}$ ATATACATATG($_{gfp}^{gfp}$)

-Mutated bases are shown in bold and uppercase letters. *E. coli RBS* is highlighted in yellow. *RBS* in *pobR-pobA* has high sequence identity with *E. coli* consensus *RBS* sequence.

C) pobR-wt sequence adapted for E. coli

ATGGAACAACACCATCAGTATTTGGCGCATCCGCATTCGAGCGAAGAGATTCGTACAGAGGACTACATCGCGGGACT GGCAAAAGGTCTGGCGTTACTGGAAGCGTTTGGCATTGATCGGCAGCGCTTAAACGTGACACAGGTAGCTGAACGCA CCGGCATTAGCCGTACAGCAGCTCGTCGTCGTCGTCTGAAAACCCTGAAGTTCTGGGTTACCTGGATACTGACGAACAC TACTTCTGGTTAACCCATCGTGTTTTGCGCTTCTCTGGAGCTATCTGAGTTCAGCGCATTTGCCGAAAGTGGCCCA ATCTTTCCTCAATCTGCTGTGTGGCGCAGACGAGTCTGACGTTAGCGATTGGTCCTGGATGAACACGAGGTGGTTC CAGTCGCCCGTTCCTATCTGCCTCAGCAAGACAACTTGCGGCGTCAGTCCGTATGGCATGCACTTAGGGAATCGTCTG CCTGCGCATGCTACCTCAACCGGTAAAGTGCTTCTTAGCGTGCTTGATCGCGAAGTACAGATCGAGTGGATCGAGA GTATGGCCTGAAACGCCTGACGCCGTATACCATCACCGATGAACACCCTTTCTTGAAACCCTGGATGCCGTTCGTC AGTCGGATTACTGCTTATCCACGGAAGAACATGAGCTCGGTCTGATTGCCATTGCGGTTCCAGTCCTCAACGCACAA GGGCTGACGATTGCAGCCCTGAACTGCATGTCCCAGACTAATCGGGTTCAACCCCAGTACCTCATCGACCAGGTGTT ACCGTTGCTGCGCAACACTGCCAACGAACTGCGCAATCTGGTATAA

D) DoubleMut sequence

-The codon TTG originally between AAC and CGC (highlighted yellow) in *pobR-wt* is deleted to represent deleted L141 residue in DoubleMut.

-The underlined codon represents L220V mutation in DoubleMut.

E) pNPmut1 sequence

ATGGAACAACACCATCAGTATTTGGCGCATCCGCATTCGAGCGAAGAGATTCGTACAGAGGACTACATCGCGGGACT GGCAAAAGGTCTGGCGTTACTGGAAGCGTTTGGCATTGATCGGCAGCGCTTAAACGTGACACAGGTAGCTGAACGCA CCGGCATTAGCCGTACAGCAGCTCGTCGTCGTCGTCTGAAAACCCTGAAGTTCTGGGTTACCTGGATACTGACGAACAC TACTTCTGGTTAACCCATCGTGTTTTGCGCTTCTCTGGAGCTATCTGAGTTCAGCGCATTTGCCGAAAGTGGCCCA ATCTTTCCTCAATCTGCTGTGTGCGCAGACGAGTCTGACGTTTACCATTGTGGTCCTGGATGAACACGAGGTGGTTC CAGTCGCCCGTTCCTATCTGCCTCAGCAAGACAACCGCCTCAGTCCGTATGGCATGCACTTAGGGAATCGTCTGCCT GCGCATGCTATCGCAACCGGTAAAGTGCTTCTTAGCGTGCCTTGATCGCGAAGACAGAGTGGATCGAGAAGTA TGGCCTGAAACGCCTGACGCCGTATACCATCACCGATGAACACCCTTTCTTGAAACCCTGGATGCCGTTCGTCAGT CGGATTACTGCTTAACCACGGAAGAATATGAGCTCGGTGTGATTGGCATTGCGGTTCCAGTCCTCAACGCACAAGGG CTGACGACTGCAGCCCTGAACTGCCTGTCCCAGACTAATCGGGTTCCAACCCCAGTACCTCATCGACCAGGTGTTACC GTTGCTGCGCAACACTGCCAACGAACTGCGCAATCTGGCAATCAG

-Codons mutated from DoubleMut are underlined.

F) Insert consisting of regulatory region and pNPmut1 gene for Nhe1/Cla1 digested pGLO vector

←(gfp)

-Nhe1 and Cla1 restriction sites are highlighted grey.

-Start codons for *gfp* and *pNPmut1* are highlighted green.

-Stop codon for *pNPmut1* is highlighted red.

-PobR operator is underlined, with inverted repeats marked with arrows.

-Promoter proximal inverted repeat sequence of the operator is highlighted yellow.

G) pNPmut1-1 based insert for sensor plasmid highlighting two mutational differences from pNPmut1

 $\label{eq:calcol} CAACACTGCCAACTGCGCAATCTGGTA \\ \begin{tabular}{l} TAA \\ TAA \\ ttggtaacgaatcagaatccctgcttcgtccatttgacaggcacattatgcatcgat \\ \end{tabular}$

-Two mutations occurring in the operator and in *pNPmut* gene are shown in uppercase bold characters and marked with bold underline. The first mutation results in subtle decrease in constitutive response of the transcription factor while the second mutation converts Aspartate 139 to Asparagine residue and enhances the response amplitude and contrast ratio significantly.

SECTION 2: TABLES & FIGURES

Supplementary Table S1. Data collection and refinement statistics

	DoubleMut-IBD	DoubleMut-IBD •3HB
Data collection		
Space group	1422	C222 ₁
Cell dimensions		
a, b, c (Å)	111.35, 111.35, 282.17	83.49, 125.66, 156.67
Protein molecules/ASU	3	4
Temperature (K)	100	100
Radiation source	APS, 19-ID	APS, 19-ID
Wavelength (Å)	0.97934	0.97934
Resolution (Å)	40.38-2.30 (2.34-2.30) ^a	49.0-2.95 (3.00-2.95)
Unique reflections	37751 (1897)	16803 (777)
R _{merge} ^b	0.119 (0.753)	0.157 (0.827)
$\langle I \rangle / \langle \sigma I \rangle$	23.1(3.1)	7.5(1.3)
Completeness (%)	96.4 (98.0)	96.2 (88.9)
Redundancy	7.8 (7.8)	4.3 (4.0)
Pofinement		
Resolution (Å)	2 21 (2 27-2 21)	2 96 (2 15-2 96)
Reflections: work/test set	25868/1874 (2548/118)	2.90 (3.13-2.90) 15824/817(3218/128)
P / P ^c	0 170/0 215 (0 225/0 279)	0 107/0 258 (0 260/0 211)
No of atoms	A128/57/118	5/67/77/13
protein/ligands ^d /water	4130/37/110	540777715
Average <i>B</i> factor ($Å^2$)	58.7/96.0/54.0	76.5/80.0/41.9
protein/ligands/water		
Bond lengths (Å)	0.008	0.009
Bond angles (°)	0.925	0.977
Most favored	97.9	94.8
Outliers	0.39	0.15
PDB ID	5HPF	5HPI

^aAll numbers in parentheses are from the highest resolution shells, ^b $R_{merge} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_i |\langle I_i(hkl) \rangle |$, where $I_i(hkl)$ is the intensity for the *i*th measurement of an equivalent reflection with indices *h*, *k*, and *I*, ^c $R = \sum_{hkl} ||F_{obs}| - |F_{calc}|| / \sum_{hkl} |F_{obs}|$, where F_{obs} and F_{calc} are observed and calculated structure factors, respectively.

Supplementary Table S2. Diversification of promoter proximal inverted repeat of PobR operator and insertion and deletion to modify the distance between operator and promoter

Native intergenic sequence	CATCTATAATCAAGGCTCAAAATT ATCCGAT TAGCATTACAACTGTCCGATGATC
Randomization (Primer 1)	CATCTATAATCAAGGCTCAAAATT ATNNNN TAGCATTACAACTGTCCGATGATC
Randomization with single	CATCTATAATCAAGGCTCAAAATT ANNNNN TAGCATTACAACTGTCCGATGATC
deletion (Primer 2)	
Randomization with	CATCTATAATCAAGGCTCAAAATT NNNNN TAGCATTACAACTGTCCGATGATC
double deletion (Primer 3)	
Randomization with single	CATCTATAATCAAGGCTCAAAATT AT<u>A</u>NNNNN TAGCATTACAACTGTCCGATGATC
insertion (Primer 4)	
Randomization with	CATCTATAATCAAGGCTCAAAATT AT<u>AT</u>NNNNN TAGCATTACAACTGTCCGATGATC
double insertion (Primer 5)	

-Equimolar mix of primers 1 to 5 was used with an appropriate reverse primer to amplify the native intergenic sequence and then assemble it using overlapping oligonucleotide PCR assembly method (2). - Theoretical diversity of the library was 5×10^3 .

Supplementary Figure S1. Dimer model of pNPmut1 based on symmetric homodimer model of DoubleMut inducer binding domain. Single base change resulted in mutation of D139 (circled) to Asparagine. Residues in 8 Å radius, which could be affected by the mutation directly or indirectly are shown as sticks and labeled. Intrachain neighbors of D139 are labeled in parentheses and shown in *italics*. Possible positioning of pNP in pNPmut1 model is depicted as a 'mesh' and is based on top 10 unique conformations of pNP in the IBD pocket.

Supplementary Figure S2. Multiple sequence alignment of PobR, DoubleMut and the IcIR template (PDB code 2IA2). Highlighted D139 is present on a loop (L1), which is shorter in many IcIR transcription factors including the template used for homology modeling.

Supplementary Figure S3. A D139/R132 intradomain salt bridge observed in the crystal structure of DoubleMut (green). This salt bridge is absent in the DoubleMut homology model (blue). D139N mutation will affect this interaction resulting in an alternate conformation of loop L1. A similar salt bridge is also observed in another IcIR transcription factor (PDB code 2XRO).

Supplementary Figure S4. A smart microbial cell and a workflow showing reagent addition, intracellular enzyme expression and catalytic activity resulting in activation of the pNP specific transcription factor. Activation of pNPmut1-1 results in expression of green fluorescent protein (GFP), which ultimately makes the cells fluorescent. The figure has been recreated from our earlier work (3).

Supplementary Figure S5. Fluorescence intensity of smart microbial cells in the presence of varying IPTG concentration that controls the expression level of phosphotriesterase (PTE) enzyme. Two variants of PTE (PTE-active consisting of PTE^{K185R/1274N} and PTE-dead consisting of PTE^{K185R/1274N/W131K/F306E}) expressed in *E. coli* result in different level of cell fluorescence. PTE-active is similar to wild-type PTE (PTE_WT) in terms of catalytic efficiency (kcat/Km), but is expected to be a higher expressing variant than PTE_WT. W131K and F306E mutations to PTE result in 4- and 3-orders of magnitude weaker catalytic efficiency independently (when Co²⁺ is used as a cofactor) (4) and these mutations were combined in a construct to create PTE-dead version.

Supplementary Figure S6. Effect of K185R and I274N mutations on the wild-type PTE activity. The variants have similar catalytic efficiency but earlier work showed mutations resulted in increase in cell lysate activity (5) possibly due to increase in expression level. Our smart microbial cell format also confirmed the previous observation by showing increase in cell fluorescence intensity when the mutant PTE was expressed inside the cell.

Supplementary Figure S7. Alternate views of DoubleMut-IBD crystal structure dimer (light grey) overlaid on IcIR dimer template for homology modeling (green, PDB code 2IA2). While inducer binding domains (IBD) of the template 2IA2 are in C2 symmetry, the crystal structure is asymmetric. One of the possibilities for such an observation is that in the absence of DNA binding domains (which form tighter dimers) and DNA operator, the canonical weak IBD homodimer interface failed to form in the crystal structure.

SECTION 3: COMPUTATIONAL MODELING

Rosetta scripts and step-by-step protocol for homology modeling and ligand-docking related to the present work has been also discussed earlier (6).

1. Structural template for homology modeling: 2ia2.pdb Create a dimer based on chains A and C each from Residue 91-263. The domains are in C2 symmetry. The dimer is called 2ia2 dimer.pdb 2. Using a perl script in Rosetta version 3.4 or later, create symmetry definition file >perl ~/rosetta3.4/rosetta source/src/apps/public/symmetry/make symmdef file.pl mode NCS -a A -i B -p input files/2ia2 dimer.pdb > input files/symm def 2ia2 dimer.dat symm def 2ia2 dimer.dat is shown below: symmetry name input files/2ia2 dimer 2 E = 2*VRT0 base + 1* (VRT0 base: VRT1 base) anchor residue 71 virtual coordinates start xyz VRT0 0.1937758,-0.2263170,0.9545845 0.7596052,0.6503845,0.0000000 10.3784383,11.2616803,48.4682588 xyz VRTO base 0.1937758,-0.2263170,0.9545845 0.7596052,0.6503845,0.0000000 6.9406243,15.2768150,31.5327861 xyz VRT1 -0.1937758,0.2263170,-0.9545845 0.9804343,0.0790260,-0.1802873 10.3784383,11.2616803,48.4682588 xyz VRT1 base -0.1937758,0.2263170,-0.9545845 0.9804343,0.0790260,-0.1802873 13.8162524,7.2465455,65.4037314 xyz VRT 1.0000000,0.0000000,0.0000000 0.0000000,1.0000000,0.0000000 11.3784383,11.2616803,48.4682588 virtual coordinates stop connect virtual JUMPO to com VRTO VRTO base connect virtual JUMPO to subunit VRTO base SUBUNIT connect virtual JUMP1 to com VRT1 VRT1 base connect_virtual JUMP1_to_subunit VRT1_base SUBUNIT connect virtual JUMP0 VRT VRT0 connect virtual JUMP1 VRT0 VRT1 set dof JUMPO to com x(17.7411980103447) angle x set dof JUMPO to subunit angle x angle y angle z set_jump_group JUMPGROUP2 JUMP0 to com JUMP1 to com set jump group JUMPGROUP3 JUMP1 to subunit JUMP0 to subunit

3. Create an alignment file for query sequence and template sequence. The file name is 2ia2_align.grishin, where first sequence is the query sequence for comparative modeling or DoubleMut (pobR Δ L141/L220V) and second sequence is the template (2ia2)

1

HLPKVAQSFLNLLCAQTSLTFSIVVLDEHEVVPVARSYLPQQDNRVSPYGMHLGNRLPAHATSTGKVLLSVLDREVQ IEWIEKYGLKRLTPYTITDEHTFLETLDAVRQSDYCLSTEEHELGVIAIAVPVLNAQGLTIAALNCMSQTNRVQPQY LIDQVLPLLRNTANELRNLV----

0 SLPEVAOPHLEKLSHKVHESSSVSILDGADIVYVARVPVS----RIMTVGITIGTRLPAYATSMGRVLLAGLPDDELDAYLEKLDIQRLTERTITARDELKAAILAVRADGICVLDQELEA GLRSMAAPIRGASGLTVAAVNISTPAARYSLEDLHSDLIPSLRVTATDIEQDLATVNR 4. Using Robetta server (www.robetta.org), to get following files for the query sequence fasta file : t000 .fasta secondary structure file: t000 .psipred ss2 fragment files: aat000 09 05.200 v1 3, aat000 03 05.200 v1 3 5. Run command (Rosetta compilation for mpi runs required) mpirun -np 159 /mypath/minirosetta.mpi.linuxgccrelease @options symm homology where, options symm homology consist of following options: -database /mypath/rosetta database -run:protocol threading -in:file:alignment input files/2ia2 align.grishin -in:file:template pdb input files/2ia2 input.pdb -symmetry definition input files/symm def 2ia2 dimer.dat -nstruct 20000 # a suitable number of trajectories -in:file:extended pose 1 -in:file:fasta input files/t000 .fasta -in:file:fullatom -in:file:psipred ss2 input files/t000 .psipred ss2 -loops:frag sizes 9 3 1 -loops:frag files input files/aat000 09 05.200 v1 3 input files/aat000 03 05.200 v1 3 none -loops:random order -loops:random_grow_loops_by 4 -loops:remodel quick ccd -loops:relax relax -relax:default repeats 1 -relax:jump move true -loops:constrain rigid segments 0.3 -relax:coord cst width 2.0 -relax:coord cst stdev 1.0 -cm:loop rebuild filter 500 -cm:aln format grishin -cm:max loop rebuild 10 -cm:min loop size 4 -out:file:silent silent.out 6. Command line for cluster application and extracting PDB from silent file /mypath/cluster.macosgccrelease @cluster flags where cluster flags consist of following options: -database mypath/rosetta database -in:file:silent silent.out -score:weights score13 env hb -in:file:fullatom -input score filter 0 -in:file:silent struct type binary

-limit_cluster_size 5
-limit_clusters 5
-limit_total_structures 25
-cluster:radius 4.0
-sort_groups_by_energy
-out:prefix output/

7. Create ligands and their respective params file A ligand file for 4HB, pNP and 34DHB were created using Avogadro software (7) and partial charges added using AM1-BCC application in QuacPac package, version 1.3.1 of OpenEye Scientific Software (Santa Fe, NM) (http://www.eyesopen.com)

4HB ligand file (phx.mol2)

@<TRIPOS>MOLECULE

 16 16 0 0 0
SMALL
USER CHARGES

@<TRIPOS>ATOM

1	C1	0.0116	0.6548	0.0000	C.ar	1	<0>	-0.1482
2	C2	-1.1946	-0.0669	-0.0000	C.ar	1	<0>	-0.0770
3	C3	-1.1986	-1.4644	-0.0000	C.ar	1	<0>	-0.2387
4	C4	0.0118	-2.1512	-0.0000	C.ar	1	<0>	0.0827
5	C5	1.2193	-1.4646	-0.0000	C.ar	1	<0>	-0.1853
6	C6	1.2179	-0.0671	0.0000	C.ar	1	<0>	-0.0817
7	C7	0.0087	2.1719	0.0000	C.2	1	<0>	0.9107
8	01	1.1388	2.7554	0.0000	0.co2	1	<0>	-0.8323
9	02	-1.1258	2.7479	0.0000	0.co2	1	<0>	-0.8353
10	03	0.0484	-3.5164	-0.0000	0.3	1	<0>	-0.5241
11	Н1	-2.1358	0.4811	-0.0000	Н	1	<0>	0.1499
12	Н2	-2.1493	-1.9844	-0.0000	Н	1	<0>	0.1064
13	НЗ	2.1593	-2.0051	0.0000	Н	1	<0>	0.1219
14	H4	2.1605	0.4780	0.0000	Н	1	<0>	0.1517
15	Н5	-0.8698	-3.8295	-0.0000	Н	1	<0>	0.3993
16	X1	0.0117	-0.7482	0.0000	Du	1	<0>	0.0000

@<TRIPOS>BOND

1	2	ar
1	6	ar
1	7	1
2	3	ar
2	11	1
3	4	ar
3	12	1
4	5	ar
4	10	1
5	6	ar
5	13	1
6	14	1
7	8	2
7	9	1
10	15	1
1	16	1
	1 1 2 2 3 3 4 4 5 5 6 7 7 7 10 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

pNP ligand file (pnx.mol2)

@ <tripos>MOLH ****</tripos>	ECULE					
15 15 SMALL USER_CHARGES	0	0	0			
<pre>@<tripos>ATON 1 C1 2 C2 3 C3 4 C4 5 C5 6 C6 7 N1 8 O1 9 O2 10 O3 11 H1 12 H2 13 H3 14 H4 15 X1 @<tripos>BONN 1 1 2 2 3 3 4 4 5 5 6 1 7 3 8 7 9 7 10 6 11 1 12 2 13 4 14 5 15 1 </tripos></tripos></pre>	M D 2 a: 3 a: 4 a: 5 a: 6 a: 7 1 8 2 9 2 10 1 11 1 12 1 13 1 12 1 13 1 14 1 15 1	-3.6990 -3.4730 -2.1635 -1.0967 -1.3610 -2.6620 -1.9071 -2.8809 -0.7282 -2.8849 -4.7250 -4.3241 -0.0668 -0.5237 -2.3978	1.6517 0.2716 -0.1957 0.7002 2.0734 2.6039 -1.6355 -2.4056 -2.0175 3.8558 2.0136 -0.4001 0.3678 2.7713 1.1759	0.1014 C.ar 0.0447 C.ar -0.0492 C.ar -0.0860 C.ar -0.0272 C.ar 0.0681 C.ar -0.1095 N.p13 -0.0771 0.2 -0.1902 0.2 0.1206 0.3 0.1749 H 0.0754 H -0.1588 H -0.0563 H -0.0077 Du	1 <0> 1 <0>	-0.3255 -0.0005 -0.3828 0.0003 -0.3261 0.5742 0.3401 -0.3088 -0.3091 -0.7327 0.1136 0.1215 0.1202 0.1155 0.0000
@ <tripos>MOLH</tripos>	ECULE	(011X:11012				
***** 17 17 SMALL USER_CHARGES	0	0	0			
@ <tripos>ATO 1 C1 2 C2 3 C3 4 C4 5 C5 6 C6</tripos>	М	-2.7452 -2.7630 -1.5614 -0.3566 -0.3330 -1.5358	1.7819 0.3861 -0.3065 0.3803 1.7670 2.4935	-0.1371 C.ar -0.2071 C.ar -0.1366 C.ar 0.0019 C.ar 0.0720 C.ar 0.0030 C.ar	1 <0> 1 <0> 1 <0> 1 <0> 1 <0> 1 <0> 1 <0> 1 <0>	-0.1065 -0.1996 0.0018 0.0732 -0.1038 -0.1214

@ <tri< th=""><th>7 C 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 X POS> 1</th><th>27 22 23 24 11 22 23 24 25 21 25 21 25 21 25 21 25 21 25 21 25 21 20 20 20 20 20 20 20 20 20 20 20 20 20</th><th>2 ar</th><th>-1.5399 0.8146 -1.5165 -0.4173 -2.6721 -3.6784 -3.7138 0.6099 0.5295 -2.4335 -1.5480</th><th>4.0084 -0.3231 -1.6744 4.5897 4.5840 2.3410 -0.1222 2.2967 -1.2536 -1.9815 1.0765</th><th>0.0770 0.0693 -0.1998 0.2032 0.0068 -0.1908 -0.3148 0.1801 -0.0011 -0.2946 -0.0675</th><th>C.2 O.3 O.co2 O.co2 H H H H H Du</th><th>1 <0> 1 <0></th><th>0.9101 -0.5121 -0.5386 -0.8261 -0.8321 0.1561 0.1066 0.1689 0.4137 0.4096 0.0000</th></tri<>	7 C 8 C 9 C 10 C 11 C 12 H 13 H 14 H 15 H 16 H 17 X POS> 1	27 22 23 24 11 22 23 24 25 21 25 21 25 21 25 21 25 21 25 21 25 21 20 20 20 20 20 20 20 20 20 20 20 20 20	2 ar	-1.5399 0.8146 -1.5165 -0.4173 -2.6721 -3.6784 -3.7138 0.6099 0.5295 -2.4335 -1.5480	4.0084 -0.3231 -1.6744 4.5897 4.5840 2.3410 -0.1222 2.2967 -1.2536 -1.9815 1.0765	0.0770 0.0693 -0.1998 0.2032 0.0068 -0.1908 -0.3148 0.1801 -0.0011 -0.2946 -0.0675	C.2 O.3 O.co2 O.co2 H H H H H Du	1 <0> 1 <0>	0.9101 -0.5121 -0.5386 -0.8261 -0.8321 0.1561 0.1066 0.1689 0.4137 0.4096 0.0000
	2	2	3 ar						
	3	3	4 ar						
	4	4	5 ar						
	5	5	6 ar						
	6	1	6 ar						
	/	6	/ _ 0 1						
	0 9	4 2	o⊥ 91						
1	0	7	10 2						
1	1	7	11 1						
1	2	1	12 1						
1	3	2	13 1						
1	4	о С	14 1 15 1						
1	6	9	16 1						
1	7	2	17 1						
_	<u> </u>	-							
Param /mypa	s fi th/m	le cro olfilo	eated e_to_	using f params.p	ollowing co y lig.mol2	ommand li -n lig	ne:		
(wher	e li	g ref	ers t	o phx, p	onx and dhx	for 4HB,	pNP and	1 34DHB respec	tively)
NAME IO_ST TYPE AA UN	phx RING LIGA K	phx . ND	Z						
ATOM	C6	aroC	Х	-0.08					
ATOM	C1	aroC	Х	-0.15					
ATOM	C2	aroC	Х	-0.08					
ATOM	C3	aroC	X	-0.24					
A T ()IVI	C4	aroc	X	0.08					
ATOM	C 5	aroC	v	-0 19					
ATOM	С5 НЗ	aroC Haro	X X	-0.19 0.12					
ATOM ATOM ATOM	C5 H3 O3	aroC Haro OH	X X X	-0.19 0.12 -0.52					
ATOM ATOM ATOM ATOM	С5 Н3 О3 Н5	aroC Haro OH Hpol	X X X X	-0.19 0.12 -0.52 0.40					
ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2	aroC Haro OH Hpol Haro	X X X X X	-0.19 0.12 -0.52 0.40 0.11					
ATOM ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2 H1	aroC Haro OH Hpol Haro Haro	X X X X X X	-0.19 0.12 -0.52 0.40 0.11 0.15					
ATOM ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2 H1 C7	aroC Haro OH Hpol Haro COO	X X X X X X X	-0.19 0.12 -0.52 0.40 0.11 0.15 0.91					
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2 H1 C7 O1	aroC Haro OH Hpol Haro COO OOC	X X X X X X X X	-0.19 0.12 -0.52 0.40 0.11 0.15 0.91 -0.83					
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2 H1 C7 O1 O2 X1	aroC Haro OH Hpol Haro Haro COO OOC OOC		-0.19 0.12 -0.52 0.40 0.11 0.15 0.91 -0.83 -0.84					
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	C5 H3 O3 H5 H2 H1 C7 O1 O2 X1 H4	aroC Haro OH Hpol Haro COO OOC OOC VIRT Haro	X X X X X X X VIRT X	-0.19 0.12 -0.52 0.40 0.11 0.15 0.91 -0.83 -0.84 0.00 0.15					

BOND	C1	C6											
BOND	C1	С7											
BOND	C2	C3											
BOND	C2	Н1											
BOND	C3	C4											
BOND	C 3	н2											
BOND	C1	C 5											
DOND		03											
DOND	04	03											
BOND	C5	00											
BOND	05	H3											
BOND	C6	H4											
BOND	C7	01											
BOND	C7	02											
BOND	03	Н5											
BOND	C1	X1											
CHI 1	C3	C4	03	Н5									
PROTO	N_CHI	1 SA	MPLES	5201	80 EXTRA	1 20							
CHI 2	C6	C1	С7	01									
NBR_A	ТОМ	С6											
NBR_RA	ADIUS	4.74	3740										
ICOOR	INTE	RNAL	Ce	5 0	.000000	0.0	00000	0	.000000	C6	C	:1	C2
ICOOR	INTE	RNAL	Cl	0	.000000	180.0	00000	1	.405809	C6	C	:1	C2
ICOOR	INTE	RNAL	C2	2 0	.000000	61.7	91205	1	.405621	C1	C	:6	C2
ICOOR	INTE	RNAL	C	3 0	.000000	58.9	42854	1	.397506	C2	C	:1	С6
ICOOR		RNAL	C4	1 0	.000000	60.5	92736	1	.391676	C3	C	:2	C1
ICOOR		RNAL	C.5	5 0	.000000	59.1	94374	1	.389056	C4	C	:3	C2
TCOOR	TNTE	RNAL.	н́	3 180	000000	59 5	22018	1	084316	C5	C	4	C3
TCOOR	TNTE	RNAL.	03	3 180	000000	58 8	93052	1	365691	C 4	C	' '	C 5
TCOOP		DNAT	U Ц	5 100	000000	72 7	06660	0	970115	03		, Л	C3
TCOOR		DNAL	11. U) 0) 100	.000000	61 1	50070	1	.970113	00		· 4 • 0	C3
TCOOR		RNAL		100	.000000	01.1 C1 1	00072	1	.003019	C3 C3		· Z	C4 C2
TCOOR		RNAL	п	L 100	.000000	61.I	02032	1	.U09110	C2		, 1 , C	
ICOOR	_INTE	RNAL	C	180	.000000	58.9	92423	1	.51/103	CI		56	CZ
ICOOR_	_INTE	RNAL	0_	L 0	.000000	62.8	01041	T	.2/1848	C7	C	1	C6
ICOOR	_INTE	RNAL	02	2 180	.000000	62.9	72996	1	.272347	C7	C	:1	01
ICOOR	_INTE	RNAL	XI	180	.000000	120.9	02137	1	.403000	C1	C	:6	C7
ICOOR	_INTE	RNAL	H4	180	.000000	60.9	38594	1	.088866	C6	C	:1	С2
PDB_R	OTAME	RS ph	x.rot	:lib18.	pdb								
NAME P	pnx												
IO_STH	RING	pnx Z											
TYPE 1	LIGAN	D											
AA UNI	K												
ATOM	C2	aroC	Х	-0.00									
ATOM	C1	aroC	Х	-0.33									
ATOM	C6	aroC	Х	0.57									
ATOM	C5	aroC	Х	-0.33									
ATOM	C4	aroC	Х	0.00									
АТОМ	C.3	aroC	Х	-0.38									
ATOM	N1	Npro	X	0 34									
ATOM	01	ONH2	X	-0 31									
ATOM	02	ONH2	X	-0 31									
ATOM	нз	Haro	X	0 12									
	нД	Haro	X	0 12									
A T OM	03	000	A V	-0 73									
	US V1			-0./3									
ATOM	∆⊥ 111	VIK.T.	V T K.T.	0.00									
AT:OM	НΤ	паго	Х	O.TT									

ATOM BOND BOND BOND BOND BOND BOND BOND BOND	H2 C1 C2 C3 C4 C5 C1 C3 N1 N1 C6 C1 C2 C4 C5 C1 C4	Haro C2 C3 C4 C5 C6 C6 N1 O1 O2 O3 H1 H2 H3 H4 X1 C3	X	0.12							
NBR_A	TOM	C2									
NBR_R	ADIU	s 4.09	99173								
ICOOR	_INT	ERNAL	C2	2 0.0000	0	0.00000	(0.000000	C2	C1	C6
ICOOR	_INTI	ERNAL	Cl	1 0.00000	0	180.000000	1	.399631	C2	C1	C6
ICOOR	_INT	ERNAL	Ce)0	56.847968]	1.408248	C1	C2	C6
ICOOR		ERNAL	Ct		/5	64./10905	1	200620	C 6 C F	CI	C2
TCOOR	 T N T I	SKNAL FDNAT		-0.00073	20	50.045001 60 982937	1	393576	CJ	C 5	CI CA
TCOOR		ERNAL	N	1 –179 99571	6	60 185166	-	463694	C3	C4	C5
ICOOR	INTI	ERNAL	01	1 - 179.86039	91	61.866203	1	.241930	N1	C3	C4
ICOOR	INT	ERNAL	02	2 179.99723	35	61.865234	1	.241870	N1	C3	01
ICOOR	INT	ERNAL	НЗ	3 -179.99888	35	61.132361	1	.084658	C4	C5	С3
ICOOR	INT	ERNAL	H4	4 179.99054	14	61.958932	1	.090405	C5	C6	C4
ICOOR	_INTI	ERNAL	03	3 -179.99195	52	57.644121	1	.272672	C 6	C1	С5
ICOOR	_INTI	ERNAL	X1	1 0.72234	12	119.468740	1	.389752	C1	C2	C6
ICOOR	_INTI	ERNAL	H1	1 179.27425	58	61.189479	1	1.090436	C1	C2	X1
ICOOR	INTI	ERNAL	H2	2 -179.99699	15	61.132795	1	.084663	C2	C1	C6
PDB_R	O.I.AMI	ers pr	1x.rot								
		-									
NAME	dhx										
IO ST	RING	dhx 2	3								
TYPE :	LIGAI	ND									
AA UN	K										
ATOM	C5	aroC	Х	-0.10							
ATOM	C4	aroC	Х	0.07							
ATOM	C3	aroC	Х	0.00							
A'I'OM	C2	aroC	X	-0.20							
ATOM ATOM	CI C6	aroC	A V	-0.12							
ATOM	C.7	C00	X	0.91							
ATOM	03	00C	X	-0.83							
ATOM	04	000	X	-0.83							
ATOM	H1	Haro	Х	0.16							
ATOM	X1	VIRT	VIRT	0.00							
ATOM	H2	Haro	Х	0.11							
ATOM	02	OH	Х	-0.54							
ATOM	H5	Hpol	Х	0.41							
A'I'OM	UT 1	UH Um a l	X	-0.51							
AIUM	п4	прот	Δ	0.41							

ATOM H3 Haro X 0.17 C2 BOND C1 BOND C2 C3 BOND C3 С4 BOND C4 C5 BOND C5 С6 BOND C1 С6 BOND C6 С7 BOND C4 01 BOND C3 02 BOND C7 03 BOND C7 04 BOND C1 Н1 BOND C2 H2 BOND C5 HЗ BOND 01 Н4 BOND 02 Н5 BOND C2 Х1 CHI 1 C5 C4 H4 01 PROTON CHI 1 SAMPLES 2 0 180 EXTRA 1 20 CHI 2 C4 C3 O2 H5 PROTON CHI 2 SAMPLES 2 0 180 EXTRA 1 20 CHI 3 C1 C6 С7 03 NBR ATOM C5 NBR RADIUS 4.760854 ICOOR INTERNAL C5 C4 C3 0.000000 0.00000 0.000000 C5 ICOOR INTERNAL C4 0.000000 0.000000 1.388671 C5 C4 C3 ICOOR INTERNAL C3 0.000000 1.393707 59.216562 C4 C5 C3 ICOOR_INTERNAL C2 ICOOR_INTERNAL C1 59.518600 C3 C4 C5 -0.001557 1.388707 C2 C3 0.003494 61.019711 1.397668 C4 С6 58.678849 C2 C3 ICOOR_INTERNAL -0.002719 1.410195 C1 C7 -179.997200 59.566566 С6 С1 C2 ICOOR INTERNAL 1.516712 03 179.997782 62.647581 1.270459 С7 С6 С1 ICOOR INTERNAL ICOOR INTERNAL 04 -179.997467 63.149145 1.272054 C7 С6 03 ICOOR INTERNAL H1 -179.996523 60.049625 1.089192 С1 C2 С6 ICOOR INTERNAL -0.005198 120.559891 1.404409 C2 C3 C1 X1 ICOOR INTERNAL H2 C2 179.998362 57.969939 1.083508 CЗ Х1 ICOOR_INTERNAL 02 -179.997544 62.079148 CЗ C4 C2 1.370095 179.997751 73.195106 H5 02 C3 ICOOR INTERNAL 0.971693 C4 01 -179.998003 60.233430 1.367854 C4 C5 C3 ICOOR INTERNAL H4 179.995830 76.310650 0.975740 01 C4 C5ICOOR INTERNAL HЗ ICOOR INTERNAL 179.994519 59.573924 1.086889 С5 C4 C3 PDB ROTAMERS dhx.rotlib18.pdb 8. Command line for ligand docking /mypath/ligand dock.macosgccrelease @dock flags where, dock flags consists of following options: -database /mypath/rosetta database -in:file:s DoubleMut.pdb -in:file:extra res fa dhx.params -out:file:renumber pdb -packing:no optH -packing:use input sc -packing:ex1 -packing:ex2 -packing:extrachi cutoff 1 -docking:randomize2

```
-docking:uniform_trans 5
-docking:ligand:minimize_ligand
-docking:ligand:harmonic_torsions 10
-docking:ligand:minimize_backbone
-docking:ligand:harmonic_Calphas 0.3
-docking:ligand:soft_rep
-docking:ligand:protocol abbrev2
-mute core.util.prof
-mute core.io.database
-flip_HNQ
-nstruct 5000
-docking:ligand:start_from 8.4075 12.37 36.728
```

References:

- Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. *FEMS Microbiol Rev* 30(2):157–186.
- 2. Stemmer WPC, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. *Gene* 164(1):49–53.
- Jha RK, Kern TL, Fox DT, M. Strauss CE (2014) Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in *E. coli* via flow cytometry. *Nucleic Acids Res* 42(12):8150–8160.
- 4. Watkins LM, Mahoney HJ, McCulloch JK, Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. *J Biol Chem* 272(41):25596–25601.
- Cho CM-H, Mulchandani A, Chen W (2006) Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. *Protein Eng Des Sel* 19(3):99–105.
- Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CEM (2015) Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor. *Proteins Struct Funct Bioinforma* 83(7):1327–1340.
- 7. Hanwell MD, et al. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *J Cheminformatics* 4(1):17.