

Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/ β -catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

Supplementary Materials

Supplementary Figure S1: (**A**) IHC detection of β-catenin and slug in SiHa-GFP, SiHa-Slug, C33A-GFP and C33A-Slug cells. (**B**) The expression of p21, p27 and cyclinD1 in SiHa-GFP and SiHa-Slug cells was detected by quantitative real-time–PCR. (**C**) The expression of p21, p27 and cyclinD1 in C33A-GFP and C33A-Slug cells was detected by quantitative real-time–PCR. (**D**) The expression of p21, p27 and cyclinD1 in HeLa-shControl and HeLa-shSlug cells was detected by quantitative real-time–PCR. (**E**) The expression of p21, p27 and cyclinD1 in Caski-shControl and Caski-shSlug cells was detected by quantitative real-time–PCR. (**F**) A quantitative CHIP assay of the E-cadherin promoter region in SiHa-Slug and SiHa-GFP cells is shown. (**G**) The expression of E-cadherin in SiHa-Slug and SiHa-GFP cells was detected by western blotting. The data were shown as the mean \pm SD of three independent experiments. *p < 0.05, **p < 0.01 vs. control using One-Way ANOVA.

Supplementary Figure S2: Blockage of the Akt1/p-Akt1 suppresses cell proliferation in the slug-modified cervical cancer cells by MK-2206. (A) The expression of Akt1, p-Akt1, p21, p27, p-Rb, p-GSK3 β , GSK3 β , β -catenin, c-myc and cyclinD1 in MK-treated SiHa-GFP and SiHa-Slug cells was detected by western blotting, and the quantitative analysis was shown (G and H). The proliferation and viability of MK-treated SiHa-GFP and SiHa-Slug cells were detected by growth curves (B) and MTT assay (C). (D) The expression of Akt1, p-Akt1, p21, p27, p-Rb, p-GSK3 β , GSK3 β , β -catenin, c-myc and cyclinD1 in MK-treated C33A-GFP and C33A-Slug cells was detected by western blotting, and the quantitative analysis was shown (I and J). The proliferation and viability of MK-treated C33A-GFP and C33A-Slug cells were detected by growth curves (E) and MTT assay (F). (K) The expression of Akt1, p-Akt1, p21, p27, p-Rb, p-GSK3 β , GSK3 β , β -catenin, c-myc and cyclinD1 in MK-treated HeLa-shControl and HeLa-shSlug cells was detected by western blotting, and the quantitative analysis was shown (Q and R). The proliferation and viability of MK-treated HeLa-shControl and HeLa-shSlug cells were detected by growth curves (L) and MTT assay (M). (N) The expression of Akt1, p-Akt1, p21, p27, p-Rb, p-GSK3 β , GSK3 β , β -catenin, c-myc and cyclinD1 in MK-treated Caski-shControl and Caski-shSlug cells was detected by western blotting, and the quantitative analysis was shown (S and T). The proliferation and viability of MK-treated Caski-shControl and Caski-shSlug cells were detected by growth curves (O) and MTT assay (P). The data were shown as the mean \pm SD of three independent experiments. *p < 0.05, **p < 0.01 vs. control using One-Way ANOVA.

Supplementary Table S1: Slug expression levels in different tissue specimen

Specimens	Total	Slug Staining		P
		Negative, No. (%)	Positive, No. (%)	•
Normal	38	4.667 ± 0.5774 (12.69 ± 0.8083)	33.33 ± 0.5774 (87.72 ± 1.518)	
Cancer in situ	24	9.667 ± 1.155 (40.28 ± 4.809)	14.33 ± 1.155 (59.73 ± 4.792)	< 0.05ª
Carcinoma	52	17.67 ± 1.155 (33.96 ± 2.200)	31.67 ± 1.155 (62.18 ± 2.217)	< 0.05 ^b

Abbreviation: Slug

Pearson 2-tailed chi-square test was used to determine the statistical significance of the level of expression of Slug in different tissue specimens.

Supplementary Table S2: The list of primer sequences that used for luciferase assays in this study

Primer name	Location	F/R	Sequence
P1	−585 ~ −355	F	CGACGCGTCTTTTGTGAGTGTAG
		R	GGAAGATCTTGGCTTAGGTTGACTT
P2	−767 ~ −511	F	CGACGCGTTGGACTTCGGACT
		R	GGAAGATCTTGGCAGCTACACTCAC
Р3	−831 ~ −706	F	CGACGCGTTGTCCAGGAGAAAG
		R	GGAAGATCTTGCTGGGTGGACTTG
P4	−886 ~ −744	F	CGACGCGTAGAACTTCTGGCT
		R	GGAAGATCTGGAATGAGTAAGTGG
P5	−918 ~ −846	F	CGACGCGTAACTCTGGAATGG
		R	GGAAGATCTACCCCTTCCTAGCC
Р6	−1012 ~ -888	F	CGACGCGTAATAAAAATGCTCC
		R	GGAAGATCTCCATTCCAGAGGC
P7	-1116 ~ -923	F	CGACGCGTATTGGCTGCAGACT
		R	GGAAGATCTCGTGAAAGACAGACTCTTG
Р8	-1345 ~ −221	F	CGACGCGTAACCCTTGTGTCAGGT
		R	GGAAGATCTTCTCTGGCCTCAGTTTC

^aNormal cervix versus cervical cancer in situ.

^bNormal cervix versus carcinoma.

$Supplementary\ Table\ S3:\ The\ list\ of\ primer\ sequences\ that\ used\ for\ chromatin\ immunoprecipitation\ assay\ (ChIP)\ in\ this\ study$

Primer name	Location	F/R	Sequence
P1	−534 ~ −462	F	TCAAAGCCTTCCTGCTCCTT
		R	AAGGAAGTGCGGGAGGAT
P2	-738 ∼ -644	F	AGGCTGACCAAGTCC
		R	GAGCAGACACCAGACAG
Р3	-824 ∼ -717	F	GTGTCCAGGAGAAAGG
		R	ATGGGTGGACTTGGTC
P4	−876 ~ −788	F	AACTTCTGGCTAGGAAGG
		R	GAGTAAGTGGGACACAGAC
P5	-915 ∼ -858	F	TGTGGGCCTCTGGAATG
		R	CCTTCCTAGCCAGAAGTTC
Р6	-982 ∼ -900	F	CAATACTTAGCAGCCTCAGG
		R	TTCCAGAGGCCCACAGTT
P7	−1068 ~ −985	F	CTGCCTCTGTCTGCATCT
		R	TTGGGGGAGCATTTTAT
3'UTR	Akt1 (3'UTR)	F	CGTTTTTGTGCTGTGGGC
		R	CATTTCCCTACGTGAATCG
E-cadherin	−25 ~ 110	F	CGTCGGAACTGCAAAGC
		R	TATGTGCGGTCG