
Supplementary Materials for Integrative Bayesian Analysis

of Neuroimaging-Genetic Data with Application to

Cocaine Dependence

Shabnam Azadeh, Brian P. Hobbs, Liangsuo Ma, David A. Nielsen,
Frederick G. Moeller, and Veerabhadran Baladandayuthapan

S1 Markov Chain Monte Carlo Performance

In this section, we report the the details of Markov Chain Monte Carlo (MCMC) performance
in computing the posterior model-specific probabilities and Bayesian model averaging for (i) entire
brain and (ii) the voxels that were flagged as significant using our FDR approach for any genetic
covariate – which resulted in the total number of significant voxels being 23,293. We used BMS
package of R software to produce the results. The bms function in the R package ”BMS” was used
to consider a burn-in of 10000, and 20000 iterations. The best models are used for convergence
analysis between the likelihoods and MCMC frequencies, as well for as likelihood-based inference.
Our MCMC method was based on a birthdeath algorithm.
Average number of regressors: Figure S1(a) and Figure S2(a) present the posterior mean of model
size using BMA for significant voxels and entire brain, respectively. The average of model size is
3.007 and 2.081 with standard deviation of 0.6272 and 0.5620 for significant voxel and whole brain,
respectively. See Table S2 for all the summary measures.
Acceptance rates of MCMC sampler: For each voxel, we calculated the MCMC acceptance rate as
the ratio of the number of times that a model was accepted to the number of MCMC iterations.
Figure S1(b) and Figure S2(b) depict the acceptance rate of MCMC method while deriving the
posterior probabilities of significant voxels and whole brain, respectively. The mean acceptance
rates are 0.25 and 0.24 for for significant voxels and entire brain, respectively, which indicate good
mixing behaviors of our sampler.
Computation times: The average MCMC elapsed time is 4.856 and 4.154 seconds with stander
deviation of 0.36 and 0.44 for significant voxels and entire brain, respectively. 1

Correlation between MCMC frequencies and marginal likelihoods: Considering the size ofM, 224 =
16777216, needs a large of the MC3 sampler to determine the high posterior probability models.
We report a correlation coefficient between visit frequencies and posterior probabilities based on
equation (3.1.6), main paper, from a run of 20000 recorded drawings after a burn-in of 10000 draw-
ings. Figure S1(c) and Figure S2(c) represents the correlation between the MCMC frequencies and
their marginal likelihoods of significant voxels and whole brain. The high values of correlation show
the set of iterations draw models with high posterior probabilities which indicate the good behavior
of the sampler (Frenández et al 2001).

1The computation system consists of 220 processor cores in 16 compute nodes. 8 nodes have 12 processor cores
(2.67 GHz) and 96GB of RAM per node. 8 nodes have 16 processor cores (2.00 GHz) and 128GB of RAM per node.
All of the nodes are connected via 10GBit Ethernet both to each other and to the PVFS fast scratch storage system.
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Figure S1: Significant voxels: (a) Top left represents histogram of posterior mean of model size. (b) Top
right shows histogram of MCMC acceptance rate. (c) Bottom is a histogram of correlation between the
MCMC frequencies and their marginal likelihood for significant voxels.

Table S1 list the descriptive statistics of average number of regressors, acceptance rates of
MCMC sampler, Computation times, and Correlation between MCMC frequencies and marginal
likelihoods for both significant voxels and entire brain.

We also plotted the average number of regressors across the entire brain obtained by our BMA
procedure. Figure S3 displays the coronal, sagittal, and axial views of average number of regressors
map for the whole white matter of brain.
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Figure S2: Entire brain: (a) Top left represents histogram of posterior mean of model size. (b) Top right
shows histogram of MCMC acceptance rate. (c) Bottom is a histogram of correlation between the MCMC
frequencies and their marginal likelihood.

S2 Model performance

We evaluated the performance of our Bayesian model averaging (BMA) based model and full
Bayesian model (Full) with no model averaging. We computed two model selection metrics as
follows:

1. approximate Deviance information criterion (aDIC): We used a variant of the Deviance in-
formation criterion (DIC) which is a hierarchical modeling generalization of the AIC (Akaike
information criterion) and BIC (Bayesian information criterion).

For voxel ν, DIC is calculated as:

DIC(ν) = D(θ) + 2pD, (S2.0.1)

where D(θ) is a classical estimate of fit, and pD presents the effective number of parameters
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Table S1: Summary of Markov Chain Monte Carlo Performance: (a) top panel shows the summary of MCMC
performance for significant voxels. (b) bottom panel indicate the summary of MCMC performance for entire
brain.

(a) Significant voxels Min. 1st Qu. Median Mean 3rd Qu. Max.

Average number of regressors 1.841 2.546 2.892 3.007 3.344 7.704
Acceptance rates of MCMC sampler 0.1366 0.2140 0.2432 0.2449 0.2738 0.4284
Computation times 4.027 4.590 4.828 4.856 5.095 6.237
Correlation between MCMC frequencies and marginal likelihoods 0.8840 0.9824 0.9884 0.9859 0.9921 0.9980

(b) Entire brain

Average number of regressors 0.9896 1.6700 1.9750 2.0810 2.3740 7.6420
Acceptance rates of MCMC sampler 0.1283 0.2056 0.2338 0.2367 0.2643 0.4362
Computation times (seconds) 2.885 3.819 4.136 4.154 4.451 6.498
Correlation between MCMC frequencies and marginal likelihoods 0.8676 0.9847 0.9898 0.9876 0.9929 0.9984

of the model (Spiegelhalter et al (2002)). In BMA, we consider the marginal likelihoods of
models. So DICj(ν) in model space M is calculated as:

DICj(ν) = 2 {kj(ν) + 1} − 2 {Lj(ν)} , (S2.0.2)

where kj(ν) presents the total number of regressors in model Mj , and Lj(ν) is the marginal
likelihood of model Mj . Using a proportion of MCMC frequencies as a weight, we can extend
DIC to BMA settings as a weighted average of the model specific DICs. Thus,“approximate”
deviance information criterion (aDIC) for voxel ν, aDICj(ν), in model spaceM is calculated
as

aDIC(ν) =
∑
j=1

DICj(ν)× wj , (S2.0.3)

where wj is a weight determined by the MCMC sampling frequency of model j.

To formally compare the aDIC of BMA, aDICBMA, versus the DIC of full model, DICFull,
we used a paired t–test where the null hypothesis H0 : aDICBMA − DICFull = 0 versus
a (one-sided) alternative hypothesis of Ha : aDICBMA < DICFull. The p-values are very
close to zero (p < 2.2 × e−16) – thus rejecting the null hypothesis in favor of the alternative
hypothesis, aDICBMA < DICFull, which shows BMA performs better in terms of the aDIC
model selection criterion.

2. Bayesian information criterion (BIC): Bayesian information criterion (BIC) is another type
of the model section criterion that can be used to choose among several set of models. It is
closely related to AIC. Similarly, for voxel ν, BICj(ν) of the models in model space M is
derived by:

BICj(ν) = −2(Lj(ν)) + (kj(ν) + 1)log(n), (S2.0.4)

where Lj(ν) is the marginal likelihood of model Mj , kj(ν) is the total number of regressors
in model Mj , and n is the sample size. In BMA, BIC(ν) is calculated by:

BIC(ν) =
∑
j=1

BICj(ν)× wj , (S2.0.5)

where wj is a weight based on the number of MCMC sampling frequency of model j. Since only
have one model for Bayesian full model, so BIC (and DIC) are calculated without considering
the weights.
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Figure S3: Brian map depicting numbers of regressors of the entire white matter. Top left: coronal view,
Top right: sagittal view, Bottom left: axial view. The colorbar indicates number of regressor for each voxel.
The multi-slice sagittal views were generated using MRIcroN software.

To formally compare the BIC of BMA, BICBMA, versus the BIC of full model, BICFull,
we used a paired t–test where the null hypothesis H0 : BICBMA − BICFull = 0 versus a
(one-sided) alternative hypothesis of the Ha : BICBMA < BICFull. The p-values are very
close to zero (p < 2.2 × e−16) – thus rejecting the null hypothesis in favor of the alternative
hypothesis, BICBMA < BICFull, which shows BMA performs better in terms of BIC model
selection criterion.

As in previous section, we focused our attention on the voxels that were flagged as significant
using our FDR approach for any genetic covariate – which resulted in the total number of significant
voxels being 23,293. Figure S4 depicts the boxplots of DIC and BIC respectively for the significant
voxels. In both scenario BMA have smaller DIC and BIC which indicate the better performance
in terms of goodness–of–fit. We further calculated the (absolute) difference between DIC and
BIC for BMA and full model. The difference is always negative which indicates BMA is always
yielded improved performance when compared to the full model. Figure S5 shows the boxplots of
differences. Table S2 list the summary of descriptive statistics for DICs and BICs in BMA and full
Bayesian models.
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Figure S4: Left (a) is a boxplot of approximate deviance information criterion. Right (b) is a boxplot of
Bayesian information criterion

Table S2: Summary of approximate deviance information criterion and Bayesian information criterion for
both Bayesian model averaging and full Bayesian model.

Model Selection Criteria Min. 1st Qu. Median Mean 3rd Qu. Max.

aDIC for BMA -185.10 -106.00 -87.76 -86.40 -67.20 28.43
DIC for Full -50.95 36.68 55.76 57.26 77.69 180.40
BIC for BMA -165.00 -84.93 -66.70 -65.35 -46.26 49.31
BIC for Full 0.55 88.19 107.30 108.80 129.20 231.90

(a) (b)

Figure S5: Left (a) is a boxplot of difference of deviance information criterion. Right (b) is a boxplot of
difference of Bayesian of information criterion
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S3 Predictive performance

We evaluate the predictive performance of our models as a measure of goodness of fit. Assuming we
want to predict the observable Y f (ν) given the corresponding regressor Xf , where f is a forecast.
We can calculate the predictive distribution of Y f (ν) as follows (Frenández et al 2001):

p(Y f (ν) | Y (ν)) =
∑
j=1

ft(Y f (ν) | n− 1,Y (ν) +
1

g + 1
X

′
f,jβ

∗
j ,

n− 1

d∗j

{
1 +

1

n
+

1

g + 1
X

′
f,j(X

′
jXj)

−1Xf,j

}−1
)P (Mj | Y (ν)), (S3.0.1)

where ft(x | d, b, a) presents the p.d.f of a univaraite t-student distribution with degree of
freedom of d, location b, and precision of a. The Y (ν) is a average of response variables. The Xf,j

shows the j elements of Xf corresponding to the model Mj regressor. β∗j = (X
′
jXj)

−1X jY (ν),
and

d∗j =
1

g + 1
Y

′
(ν)MXjY (ν) +

g

g + 1
(Y (ν)− Y (ν))−1(Y (ν)− Y (ν)). (S3.0.2)

To evaluate the predictive performance, we split the sample into train and test sets as follows:
(i) n observations are used for posterior inference (training) and (ii) q observations are retained
(test-set) to examine the precision of the predictive performance. Then, for each voxel ν in the
tests set, we compute the log predictive score (LPS) for f = n+ 1, . . . , n+ q as follows:

LPS(ν) = −1

q

n+q∑
f=n+1

log{p(Y f (ν) | Y (ν))} (S3.0.3)

A smaller LPS(ν) indicates the better prediction. Assuming i.i.d sampling the LPS approxi-
mates an integral which equivalent to the sum of Kullback-Leibler divergence between the actual
sampling density and the predictive density which is provided in equation (S3.0.6), and the entropy
of the sampling distribution. Thus, LPS capture uncertainty through two sources: (i) the lack of fit
and (ii) inherent sampling uncertainty (see Frenández et al 2001 for more details). Under a Normal
sampling model with fixed variance σ∗ this entropy equals to ln(σ∗

√
2πe). So, a known normal

Normal distribution with fixed σ∗ would have the same inherent predictive uncertainty. Hence, by
choosing σ∗ = exp(LPS)√

2πe
, we could calculate the inherent uncertainty through the LPS scores.

We evaluated the predictive performance of LPS over 4 different training and tests splits:
{33%, 25%, 20%, 10%}. We compared the inherent model uncertainty through LPS for Bayesian
model averaging (BMA) and Full Bayesian model (Full). Figure S6 show the contour (scatter) plot
of LPS for BMA versus Full model for all voxels. In all scenarios, the BMA-based LPS scores are
lower than the Full model, thus indicating better predictive performance. To formally compare the
LPS of BMA, LPSBMA, versus the LPS of full model, LPSFull, we used a paired t–test where
the null hypothesis is H0 : LPSBMA − LPSFull = 0 versus a (one-sided) alternative hypothesis of
Ha : LPSBMA < LPSFull. For all four scenarios, the p-values are very close to zero (p < 2.2×e−12)
– thus rejecting the null hypothesis in favor of the alternative hypothesis, LPSBMA < LPSFull,
which shows BMA performs better in terms of inherent uncertainty and prediction.
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Figure S6: Contour plot of LPS scores for different test splits: (a) 33% , (b) 25% , (c) 20% and (d) 10% of
observations. The red-line indicates the 45-degree line through origin.
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S4 Comparison of the regression coefficients of full Bayesian model
and Bayesian model averaging

In this section, we compare the regression coefficient estimates (β(ν)’s) obtained from BMA and
full Bayesian model for the voxels mapped to entire white matter of the brain. Figure S7 depicts
the contour plot of regression coefficient of BMA versus full model for the covariates: cocaine
abuse, GAD1a and GAD1b. As can be seen there is much larger spread of the β’s obtained from
BMA as compared to the full model which typically result in more shrunken (towards zero) effects.
Furthermore, we evaluated the number of significant voxels obtained using the full model as follows.
Since the posterior probability of BMA and full model are not directly comparable – since the full
model does not incorporate model selection – we computed the number of significant voxels by
deriving the credible intervals of each regression coefficient, and counting number of times that
β = 0 is not contained in the credible intervals. Figure S8 provides the number of significant voxels
of BMA versus Full model for the three covariates: cocaine abuse, GAD1a and GAD1b. The results
show that BMA detects much larger number of significant voxels as compared to full model, which
we conjecture is due to the over-shrinkage of the estimates.

(a) (b)

(c)

Figure S7: (a) Top left represents contour plot of Bayesian model averaging versus full Bayesian model for
cocaine abuse. (b) Top right shows contour plot of Bayesian model averaging versus full Bayesian model for
GAD1a. (c) Bottom is a contour plot of Bayesian model averaging versus full Bayesian model for GAD1b.
The red-line indicates the 45-degree line through origin.
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Figure S8: Barplot of significant voxels for: (a) top left cocaine abuse, (b) top right GAD1a, and bottom
GAD1b.
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S5 Multi-slice sagital views

Figures S9, S10, and S11 provide more anatomic locations of Significant regions (SRs) for genetic
variants with more than 1000 significate voxels and cocaine consumption abuse, respectively.

Figure S9: Multi-slice sagittal views displaying significant regions2associated with GAD1a. The SRs, de-
picted in red, characterize locations for which alteration of mean FA was evident from statistical analysis.

2 In the significant voxels, the adjacent voxels equal to or greater than 20 were grouped and named as significant
regions (SRs) to limit noisy images while plotting the sagittal views so that all significant voxels might not be
displayed. Significant voxels were groupedc in SPM software using MarsBaR tool. Then multi-slice sagittal views
were generated using MRIcroN software. (Same strategy is used in Figure S10 and Figure S11.)
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Figure S10: Multi-slice sagittal views displaying significant regions for the following genetic variants:
HTR2A, TH, SLC6A4b, ADRA1A, and SLC6A3b, respectively from the top to the bottom panel. The
SRs, depicted in red, characterize locations for which alteration of the mean FA was evident from statistical
analysis.
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Figure S11: Multi-slice sagittal views displaying significant regions associated with cocaine consumption.
The SRs, depicted in red, characterize locations for which alteration of the mean FA was evident from
statistical analysis.
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