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Supplementary Note 1 – Detailed notes on data analysis performed 

Transcription factor-based analyses of ATAC-seq data: 

To compute TF accessibility scores, across hematopoiesis we made pairwise cell type 

comparisons using normalized accessibility, described above, down the hematopoietic hierarchy, 

wherein we compared a given cell type to its progenitor cell type using all technical and biological 

replicates. We then used the TF deviations analysis code, as previously described23, to determine 

the gain or loss of accessibility of a given TF motif. In brief, this analytical tool determines a bias-

corrected “deviation” score, analogous to a z-score, of a given annotation by first summing 

normalized accessibility across all peaks sharing the given annotation, these scores are then 

normalized to the variance observed within a background signal representing the expected signal 

given GC sequence bias and peak intensity bias. This analytical framework is discussed in great 

detail in the supplementary methods of previously published work23. This measure of TF 

accessibility is highly robust to the number of sequenced reads, DNA sequence bias, and signal-

to-noise bias. Here, values shown as “deviation” are the average across all replicates representing 

a given cell type. TF motifs used in this analysis are from the Jaspar database and were mapped 

using FIMO23, a full description of the motif can be found on the Jaspar website using the Jaspar 

ID provided in Supplementary Table 3. To filter for hematopoiesis TFs, we filtered for TFs with a 

z-score >1.5 (max deviation for a given TF in each cell type, over all TFs in all cell types). High-

variant TFs were then filtered to a unique hematopoietic TF set by hierarchical clustering of the 

motif locations in hematopoiesis peaks, TFs with the highest z-score across hematopoiesis were 

chosen to represent a unique TF motif set. To represent deviation scores across the hierarchy, we 

computed “relative deviation” scores, which represent scores relative to HSCs. HSCs are defined 

to have a deviation score of 0. Scores for terminally differentiated cell states are represented as the 

sum of “relative deviation” scores across all upstream progenitors. 

 

GWAS association analysis: 

To test for enrichment of GWAS variants in open chromatin and regulatory regions, we 

used all GWAS data sets in the Roadmap GWAS database (N=67)18 and the GRASP database 

(N=178)54. We also included two larger GWAS studies for Type 1 diabetes55 and Alzheimer’s 

disease56. The GWAS SNPs were pruned to contain no variants in linkage disequilibrium by 

keeping the most significant p-value where there were multiple linked variants for the same trait.  

These were then expanded to all linked variants with European R2 ≥ 0.8 for all further analysis.  

We performed a rank-based enrichment of GWAS variants in the distal elements of each 

cell type profiled in the Roadmap Epigenomics Project. We segmented each GWAS study into 

bins representing different tiers of significance. We set a minimum bin size of 50 and filled the 

first bin with the 50 most significantly associated variants for each study. We then filled the next 

bins with 2*50, 4*50 and 8*50 variants and then segmented the remaining variants into bins at the 

four quartiles of the remaining p-value distribution. We then computed the rank fold change 

enrichment of distal elements across the segmented GWAS30. For each bin we computed the 

fraction of GWAS variants less than or equal to the bin’s p-value threshold that overlapped distal 

elements in each Roadmap cell type to determine a set of significant GWAS peak association, 

which varied by GWAS considered. We calculated the fold change enrichment by dividing this 

fraction by the fraction of all GWAS variants of any significance level overlapping distal elements. 

Using this approach, we generated a table of the mean fold change enrichment of the two most 

significant bins for each Roadmap cell type in each GWAS. To calculate blood-specific GWAS 

annotations, we performed hierarchical clustering of row-normalized z-scores and found two 
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distinct clusters representing “Blood” and “Others”. Using this list of blood-enriched GWAS, we 

applied the “deviation” pipeline (as described in the previous section for TF motifs), using an 

identical approach wherein each GWAS disease is analogous to a TF motif and each GWAS peak 

association is analogous to an individual TF motif occurrence in a peak. 

 

Single-cell ATAC-seq and enhancer cytometry analysis: 

Preprocessing for single-cell ATAC-seq data was done as described in “ATAC-seq Data 

Analysis”. To compute “Myeloid”, “Erythroid” and “Lymphoid” differentiation scores, we first 

learned the PC’s from bulk samples across all normal cell-types producing 12 PCs using MATLAB 

(SVD PCA). To reduce the effect of technical biases in the PCs, we averaged over technical and 

biological replicates and filtered for distal elements, as described for CIBERSORT above. We then 

re-scored the bulk and single-cell ATAC-seq data by subtracting the mean followed by multiplying 

by the coefficients of the PCs learned using MATLAB’s PCA implementation. The centroids for 

each cell type from the rescored bulk samples were used for downstream processing. Samples were 

projected onto the hematopoiesis PCs with two methods. First, single cells were fit as the mixture 

of normal bulk cell types (linear least squares) using the PC scores of the corresponding 

developmental lineage (“Myeloid”, “Erythroid” or “Lymphoid”) and projected onto the bulk PCs 

(Fig. 6c,d, Supplementary Fig. 12b,d–e,g). Cells with a correlation coefficient (Pearson) of less 

than 0.9 compared to the least-squares mixture were excluded, notably these cells were enriched 

for cells with low read numbers and empty wells. Second, synthetic “Myeloid”, “Erythroid” or 

“Lymphoid” developmental trajectories were computed by fitting a line across the associated cell 

types of each PC score. Developmental scores were then assigned as the maximum similarity 

(Pearson) of single-cells to the developmental trajectory (Fig. 6e,f). Cells with a maximum 

correlation coefficient of <0.9 were excluded. This approach was tested by down-sampling bulk 

cells to 1,000 fragments (Supplementary Fig. 12b,c). This single-cell approach was also 

independently validated by their score similarity to CIBERSORT from bulk cell lines 

(Supplementary Fig. 12f–k). 
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Supplementary Note 2 - Using the accessibility profiles of hematopoietic subsets to chart 

the ontogeny of human diseases 

In our work, we demonstrate the applicability of our data to understanding the cell types 

responsible for various human diseases. By measuring the activity of regulatory elements that 

overlap regions with predicted sites of functional variation from GWAS, it is now possible to 

more accurately predict the specific cell types impacted by genetic variants linked to diverse 

human diseases (Supplementary Fig. 10a–c; see methods)28–30. To do this we first filtered for 

GWAS that were significantly enriched in hematopoietic cells (Supplementary Fig. 10a,b), then 

calculated “deviation” scores for each GWAS across the hematopoietic hierarchy (see methods). 

We found that each of these associations can be traced through the hematopoietic lineage to 

predict the developmental point at which each variant may first exert its effects, thus enriching 

our understanding of the developmental origins of human disease (Fig. 4h-k and Supplementary 

Fig. 10c). 

As an example, polymorphisms linked to mean corpuscular volume (MCV), a measure of 

the average volume of an erythrocyte cell, are most strongly enriched in erythroblasts (Fig. 4h). 

Intriguingly, many regions associated with MCV polymorphisms first become accessible at the 

CMP and MEP stages suggesting that these polymorphisms may exert their effects prior to full 

erythroid lineage commitment. As a second example, polymorphisms associated with rheumatoid 

arthritis (RA) show a strong enrichment in B cells (Fig. 4i), consistent with the known role of 

autoantibodies and pathogenic B cells in the pathogenesis of RA, as well as the documented 

success of B cell depletion therapy in the treatment of RA31,32.  

We find a more complex pattern in the disease alopecia areata, an autoimmune disease 

characterized by hair loss. The autoimmunity driving this disease has recently been associated with 

both innate and adaptive immune responses33, a result consistent with the enrichment of 

polymorphisms for alopecia areata in both T cells and monocytes (Fig. 4j). B cells also harbor 

many active elements associated with alopecia areata but have not been studied in this disease, 

suggesting a new direction of investigation. Importantly, our results are not limited to diseases 

canonically associated with hematopoietic cells; polymorphisms linked to Alzheimer’s disease 

show a strong enrichment in B cells and monocytes, two cell types that have predicted roles in the 

pathogenesis of the disease28,34,35 (Fig. 4k). 
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Supplementary Note 3 – Extended discussion on the regulatory heterogeneity observed in 

AML 

Our bulk cell measurements of AML cell types show stark patterns of regulatory 

heterogeneity, for example clonally-derived LSCs show contributions from multiple and distinct 

cell states, i.e. HSC, LMPP, CMP, and GMP. This ensemble measure suggests that at the single-

cell level, either i) cells represent a clonal outgrowth of a rare cell type and/or intermediate 

differentiation state, ii) cells have coopted regulatory programs, and exist as stable intermediate 

cell states that are not normally observed in normal hematopoiesis, or iii) this ensemble 

measurement is actually a mixture cell types whereby samples represent a mixture of HSC, CMP, 

LMPP, GMP and monocyte-like states.  

To definitively distinguish between options (i) and (ii), would likely require extensive 

single-cell ATAC-seq of tens-of-thousands of single-cells. Such an effort, would likely uncover a 

vast repertoire of rare regulatory heterogeneity, which may also include rare intermediate cell 

states encompassing our bulk measurements in AML. In our interpretations of these data, we 

believe that the regulatory heterogeneity observed in AML cells could arise from all three scenarios 

presented above, including cell states that are not normally stable in hematopoiesis. Importantly, 

each observed AML sample exhibits considerable and unique regulatory heterogeneity, which 

suggests that the regulatory diversity in AML cells are not a product of 1 or 2 rare and 

uncharacterized stable progenitor cell states. We find some cases (SU353 blast cells) where there 

appear to be two epigenetic clusters of cells, supporting the hypothesis that regulatory 

heterogeneity in AML can arise from inter-cellular epigenetic clonal heterogeneity (Fig. 6f). 

Additionally, we also find other cases (SU070 LSCs, SU070 blasts, and SU353 LSCs) where the 

AML cells appear to show intra- rather than inter-cellular heterogeneity with single cells harboring 

mixed regulatory contributions (Fig. 6c,d, and f). 

Importantly, we have also provided single cell regulome data from LMPPs and monocytes 

which show that the regulatory heterogeneity seen in single cells from primary AML samples is 

not encompassed by the diversity of individual normal myeloid lineage cells (Fig. 6e and 

Supplementary Fig. 12b-e). Our results from primary patient AML are additionally supported by 

scATAC-seq analysis of the commonly used clonal HL60 cell line (Supplementary Fig. 12g-h). 

Therefore, our conclusion is that AML cells show regulatory heterogeneity arising from multiple 

sources including i) single cells harboring mixed regulatory contributions from multiple normal 

cells and ii) intercellular epigenetic heterogeneity. 
 


