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Study area 6 

Our field site is located in Macon County (1,347 km2), North Carolina, U.S.A., part of the 7 

Southern Appalachian Mountains. The whole range is soil-mantled, with upland hillslopes 8 

characterized by the nose and hollow topography typical of Appalachian regions1. The geology 9 

of Macon County is composed of high and moderate grade metamorphic rocks in a structurally 10 

complex arrangement that crosses topography2. The mountain range is tectonically quiescent, 11 

with some debate as to the timing of late stage uplift of the mountains3. Regardless of their 12 

genesis, the mountains maintain high relief of close to 1000 m through high topographic features 13 

such as the Blue Ridge and Nantahala Escarpments, resulting in the steep topography necessary 14 

to generate significant landsliding. The soil mantle is maintained by a humid, sub-tropical 15 

climate at lower elevations and marine, humid, temperate climate at higher elevations, with mean 16 

annual precipitation ranging between 1800 and 2300 mm for elevations between 700 and 17 

1400m4.  18 

Current forests in the landslide prone higher elevations of the Southern Appalachians are 19 

dominated by either northern hardwoods, or a combination of xeric oak-pine, cove and mixed 20 

hardwood forests5. The current forest structure is thought to have been established at close to its 21 

current elevation distribution by the mid-Holocene6. Prior to this, more extensive northern 22 

hardwood forests existed, and during the last glacial maximum the highest peaks are likely to 23 

have been dominantly periglacial7. Empirical observations of root reinforcement of soils have 24 

shown that there is a difference in the strength of soils between noses and hollows8. Root 25 

reinforcement within individual hollows is highly variable 8-10 due primarily to differences in 26 

root biomass of different tree species, and within individual tree species as a function of age, 27 

substrate, nutrient contents and other factors. There is no regional pattern in root reinforcement 28 



provided by the dominant forest types in the Appalachians8. However, there may be significant 29 

uncertainty in the root strength of an individual hollow, which we constrain within our model. 30 

Because there is no obvious regional trend in root reinforcement across the forest types of the 31 

Southern Appalachians, we infer that forest change alone does not cause significant differences 32 

in root reinforcement through time. The later 19th and early 20th century saw extensive 33 

deforestation in this area both by clearfelling and selective logging11. However, the only study of 34 

deforestation effects showed no difference in landslide initiation rates between clearfelled and 35 

natural forests, suggesting that clearfelling did not significantly increase the proportion of the 36 

landscape susceptible to landsliding12. 37 

Landslides have been recorded in the southern and central Appalachians for over a century13. 38 

Hundreds of landslides have been associated with large cyclonic storms in North Carolina, 39 

Virginia and West Virginia between 1916 and 2007.  Tens of landslides across Macon County 40 

were associated with 2004 Hurricanes Ivan and Frances. The resulting investigation by the North 41 

Carolina Geological Survey (NCGS) led to a 2-year-long historical, remote sensing, and field 42 

study that created an extensive landslide inventory for the area14-16. Field measurements of 43 

recently failed landslides (2003-2013) were used as part of our dataset of soil information. 44 

Soil depth measurements 45 

We calculated the distribution of current hollow colluvium thicknesses in the field using a 46 

combination of soil pits and soil tile probe measurements. We randomly chose hollows to survey 47 

by examining areas of convergent topography with potential in the categories Lower bound 48 

instability, Upper bound instability, Unconditionally unstable, from SINMAP analysis 49 

undertaken by the NCGS15. 50 

In order to measure the depth of colluvium in large numbers of hollows, we developed a field 51 

methodology using a 2.5 meter long, AMS soil tile probe (http://www.benmeadows.com/ams-52 

heavy-duty-extendible-tile-probe_36814889/).  This is a reinforced steel rod that can be driven 53 

by hand into rugged soils, to attain a bedrock refusal depth. Depths were measured vertically and 54 

rotated normal to the hillslope surface using the local slope gradient. The technique provides an 55 

accurate estimate of colluvium depth in soft soil with a discrete bedrock interface. However, 56 

underestimates occur where the probe strikes hard clasts in the soil column, and overestimates 57 



occur where the probe penetrates into bedrock fractures or zones of rock that have weathered to 58 

saprolite. We developed a methodology with three levels of accuracy for measuring soil depth.  59 

At each site we first probed the soil around the apex of the hollow, to find the area of deepest 60 

colluvium. Excavating a pit in the hollow apex, down to the bedrock, attained the most accurate 61 

and definitive measure of soil depth. The soil thickness from the soil surface to the bedrock 62 

interface was then measured using a tape measure. Accounting for uneven soil and bedrock 63 

surfaces, we estimate the accuracy of this technique to be σ = ±0.02  m.  64 

Using the soil tile probe, our most accurate measure of soil depth was attained from the 65 

maximum of 20 probe depths, collected in a 1x1 m sample zone in the apex of the hollow (66 

hprobe20 max ). Monte Carlo analysis using data from our pilot study indicated that this technique 67 

should provide 95% confidence that the depth measurement was within 10% of the actual soil 68 

depth. We assessed the final accuracy and precision of this method through comparison of these 69 

data with the depth of colluvium measured definitively in excavation pits (at 16 sites), using 70 

regression analysis (Extended Data Fig. 3). On average our hprobe20 max  data overestimate the 71 

colluvium depth by 5%, and we attain a standard deviation of residuals of 0.33 m: 72 

(1) 73 

h = 0.95hprobe20 max ±σ = 0.33  74 

Our coarsest, reconnaissance level measure of soil depth was attained by taking the maximum of 75 

3 probe depths, within a 1x1 m sample zone in the hollow apex ( hprobe3max ). We assess the 76 

uncertainty for these sites through Monte Carlo simulation of our methodology, inverse-77 

transform sampling the maximum of 3 depths from data at the same 16 pit sites. Our results 78 

suggest that the hprobe3max  data underestimate the colluvium depth by 15%, and for these sites we 79 

attain a standard deviation of residuals of 0.37 m. 80 

(2) 81 

h =1.17hprobe3max ±σ = 0.37  82 

Using (1) and (2), we transformed our probe depth data, to estimate the depth and depth 83 

uncertainty for each hollow. 84 



Critical Soil Depth Measurements 85 

Critical soil depths (hcr) were calculated using the Mohr-Coulomb failure criterion solved for 86 

depth and assuming full soil saturation, 87 

(3) 88 

hcr =
c

γw tanφ cosβ +γ sat cosβ(tanβ − tanφ)
. 89 

where c is the soil and root cohesion, γw is the weight of water, γsat is the saturated weight of soil, 90 

ϕ is the friction angle, and β is the slope of the hollow17. We determined the key parameters from 91 

field and laboratory observations and using a digital elevation model: 92 

Root cohesions (c) were determined by analyzing the diameter distribution and tensile strength of 93 

roots collected in pits excavated in Coweeta Hydrologic Laboratory8,18. Using the Wu method19 94 

we determined the lateral cohesion at each pit. 95 

Soil cohesion and friction angles (ϕ) were measured for two soil pits in Coweeta Hydrologic 96 

Laboratory8. Samples were triaxially tested by the North Carolina Department of Transport and 97 

parameters were calculated based on the stress path methodology. 98 

Saturated weight of soil (γsat) was measured during the emplacement of time-domain reflectivity 99 

probes following the methods of Amoozegar20. 100 

Hollow axis gradients (β) were constrained using a 6 m resolution LiDAR-derived digital 101 

elevation model 21. Landscape gradients were derived at the DEM resolution by calculating the 102 

maximum gradient between each 6 m pixel and its 8 neighbouring pixels. We attained β from the 103 

DEM gradient at the GPS location (accurate to <6 m) of each sample site. 104 

The rate of soil accumulation in hollows is determined by the ratio of hollow axis gradient to the 105 

hollow side-slope gradient and the soil creep transport coefficient (D) (see (5) below). Hollow 106 

side-slope gradients (α ) were attained by taking the hypotenuse (Euclidean maximum) of the 107 

hollow axis gradient (β), and the slope gradient measured perpendicular to the hollow axis. Note 108 

that for hollows, by definition, α  is always greater than β , so we report this variable in terms of 109 

a β α  hollow concavity ratio.  110 



Soil creep transport coefficient (D ) values for the Southern Appalachians have been estimated at 111 

6.5-10 m2 ka-1 22, based on in-situ and meteoric 10Be analysis of hillslope soils 23. 112 

To assess the uncertainty in critical soil depth measurements we used the Monte Carlo Method. 113 

We randomly sampled the distributions of input variables (Extended Data Fig. 4 A-E) using 114 

inverse transform sampling.  This technique interpolates between quantiles of our sampled data, 115 

allowing us to generate continuous random variables without being restricted to the sample 116 

values. 117 

One-dimensional Model of Hollow Infilling and Evacuation 118 

We modelled infilling and evacuation for a synthetic population of 1000 hollows (Extended Data 119 

Fig. 2 & 3) with characteristics derived randomly from our field and DEM parameters (Extended 120 

Data Fig. 4 A-E). We model infilling and evacuation in colluvial hollows in one-dimension using 121 

a model developed by Dietrich et al.24 and  D'Odorico and Fagherazzi 25. This model simplifies 122 

hollow geometry and hydrology by assuming that there is little change in slope along the hollow 123 

axis, therefore soil accumulation is determined by the difference in side-slope and hollow 124 

gradients. This model is preferred over more complicated models of hollow infilling and 125 

evacuation because the result is a measure of soil depth that can be directly compared to our data. 126 

The model estimates the soil depth for a population of hollows based on two components: i) the 127 

growth of colluvial deposits via weathering of underlying bedrock and hillslope sediment 128 

transport processes, ii) downslope evacuation of colluvium during landslides, promoted by pore-129 

pressure generation during rainstorms.  130 

The growth of colluvial deposits in hollows is modelled assuming soil creep is linearly 131 

proportional to the topographic gradient. Given a hollow where sediment enters from side slopes 132 

and leaves along the hollow axis23, this results in: 133 

(4) 134 

dh
dt
=
K
2h

, 135 

and 136 



(5) 137 

K = 2Dcosβ(tan2α − tan2 β) , 138 

where h  is the colluvium depth (measured perpendicular to the bedrock), t  is time, β  is the 139 

hollow axis gradient and α  is the hollow side-slope gradient measured along the soil-bedrock 140 

interface, and D is the sediment transport coefficient 26. Assuming that the underlying hollow 141 

bedrock geometry does not vary substantially with time, β and α remain constant 25. The cross 142 

sectional shape of each by each hollow is assumed to be triangular and colluvium thickness 143 

increases as  144 

(6) 145 

h = Kt . 146 

Soil production by bedrock weathering beneath the hollow is assumed to be negligible with 147 

respect to infilling via soil diffusion from the hollow side-slopes 24. When hollows fail, landslide 148 

events scour the colluvium down to bedrock, such that h = 0 . This assumption is supported by 149 

observational evidence that shallow landslide failure surfaces generally coincide with the 150 

regolith-bedrock interface 27-29.  151 

The stability of colluvium accumulated in hollows is modelled using the Mohr-Coulomb failure 152 

criterion applied to an infinite planar slope 30. This one-dimensional technique is widely used as 153 

a geotechnical component in geomorphic and landscape evolution models. The infinite slope 154 

assumption is generally considered valid for natural landslides, where the landslide length is long 155 

relative to the depth 31. Uncertainty analyses suggest that where length-depth ratios exceed 25, 156 

stability (factor of safety) predictions from more physically accurate finite-element models 157 

converge within 5% of those from the infinite slope method 32. This criterion is therefore 158 

applicable to shallow landslides in colluvial hollows, and provides an appropriate level of 159 

accuracy for assessing hollow behavior at the regional-scale. Additionally, more accurate models 160 

are not justified, due to the lack of knowledge on the soil geotechnical and hydrological 161 

properties and their spatial variability 33. The form of the infinite-slope model used and the 162 

implications for hollow behavior discussed below, are specific to soils with cohesion. The 163 

apparent cohesion provided by roots is also necessary to explain the presence of slopes greater 164 

than maximum values of φ  observed in Appalachian soils. We take the approach of many other 165 



authors (e.g. Schmidt et al., 200134) and calculate the additional cohesion provided by roots as 166 

the lateral cohesion provided by root penetrating the soil column. Thus, the use of this model is 167 

valid for the study of shallow landslides in our field area.  168 

For each hollow we calculate the critical failure depths for partially saturated soils ( hcrp ) for a 169 

particular percentage soil saturation; the height of the water-table as a fraction of the soil 170 

thickness above the bedrock interface (m ). 171 

(7) 172 

hcrp =
c

mγw tanφ cosβ +γ sat cosβ(tanβ − tanφ)
 173 

Here it is assumed that the subsurface flow is uniform with hydraulic gradient corresponding to 174 

the topographic slope. The hydrologic model that we infer is the standard model that forms the 175 

basis of most shallow landslide models 25,35.  Measurements of high exfiltration pressures in a 176 

shallow landslide in Coos Bay, Oregon suggest groundwater pressures may affect this 177 

condition36, however, no shallow landslide model parameterizes the bedrock exfiltration pressure 178 

component of pore pressure. Assuming that saturated overland flow takes place when the height 179 

of the water column exceeds the soil depth, the saturated depth cannot be greater than the 180 

colluvium thickness, such that when h < hcr, the colluvium is always stable. The maximum soil 181 

depth (hmax) is the depth of colluvium at which a hollow will become unstable regardless of pore 182 

pressure state. However, hmax is only relevant to the behavior of hollows with β > ϕ, where an 183 

increase in colluvium depth favors instability of the slope. Where β ≤ ϕ, an increase in colluvium 184 

thickness favors slope stability and hmax  ℎ"#$is infinite. In other words, the saturated soil depth 185 

required to trigger failure increases as the soil thickens. 186 

Influence of changes in storm frequency on landlside frequency using a steady-state 187 

hydrologic model 188 

To further support our findings, we also include results generated using a fully-implemented 189 

steady-state hydrologic model, across a subset catchment (Coweeta Long-term Ecological 190 

Research Laboratory) using a sample of 6068 hollows delineated from 1m LiDAR topographic 191 

data, using the DrEICH algorithm37. After D’Odorico and Fagherazzi (2003)38, the precipitation 192 

into a hollow is equated to the outgoing subsurface flow occurring through the saturated depth: 193 



 194 

          (8) 195 

𝑅𝐴 = 𝐻)#*+𝐾)#* sin 𝛽
1

tan 𝛿 196 

 197 

where 𝑅 is the rainfall intensity, 𝐾)#* is the hydraulic conductivity (𝐾)#* sin 𝛽 is the specific 198 

discharge of the subsurface flow (Darcy’s law in the assumption of uniform flow), 𝐴 is the 199 

hollow catchment area, and tan 𝛿 represents the ratio of saturated height to width at the 200 

triangular outlet of the hollow (𝛿 is the slope gradient at 90o to the hollow axis). The saturated 201 

depth can be then expressed as: 202 

 203 

            (9) 204 

𝐻)#*
𝑅𝐴

𝐾)#* sin 𝛽
1

tan 𝛿
 205 

 206 

𝐾)#* was set to 65 md-1 (after 39), which results in a long-term distribution of modelled landslide 207 

potential consistent with that observed in hollows where we measured colluvium depth. 208 

Although 𝐾)#* exhibits a high level of natural variability, and ranges over several orders of 209 

magnitude for soils of different textures, this value provides a calibration of landslide potential 210 

consistent with our observations, and therefore appropriate for testing the sensitivity of landslide 211 

potential and frequency to increases in precipitation. 212 

 213 

To test the sensitivity of landslide potential and frequency to a 10% increase in precipitation 214 

event frequency, we first generated synthetic annual maximum precipitation events from a 215 

locally observed 75-year daily precipitation record (Fig. 7A) and elevation-dependent conversion 216 

ratios40. The distribution of daily precipitation intensities is expressed as a gamma function fitted 217 

to the observed data, which we find to best characterise the observed data out of all available 218 

continuous distributions (http://docs.scipy.org/doc/scipy-0.16.0/reference/stats.html, Fig. 7B). 219 

The synthetic timeseries of largest annual storms was then generated by taking the maximum of 220 

365 randomly selected daily precipitation intensities for each year. This distribution corresponds 221 

closely with the observed distribution of annual maximum daily intensities between 1937 and 222 



2012, suggesting that this technique provides a reasonable representation of long-term 223 

precipitation patterns in this landscape (Fig. 7C). 224 

 225 

Using the same parameters as in our simplified simulations, we then ran the model for a spin up 226 

period of 300,000 years to allow landslide frequency and landslide potential variables to 227 

stabilize. For a further 40,000 years, we first continued the simulation with no change in 228 

precipitation frequency (Fig. 8A). Then, using the same precipitation event series, we reran the 229 

simulation for the last 40,000 years, but decreased the model time step by 10%, to simulate a 230 

10% increase in precipitation frequency (Fig. 8B).  Comparing the results, we find that a 10% 231 

increase in precipitation event frequency results in a 0.1% reduction in landslide potential and a 232 

corresponding 0.3% increase in landslide frequency. At the upper limit of the projected shift to a 233 

wetter future climate, this 10% increase in frequency is combined with an 11% increase in 234 

precipitation intensity. In response to this change we see a 0.9% reduction in landslide potential 235 

and a corresponding 1.4% increase in landslide frequency (Fig. 8C). Despite the increase in long-236 

term landslide frequency, we also find that the maximum or peak numbers of landslides triggered 237 

by individual storms are reduced, as more frequent, larger storms increasingly limit the 238 

accumulation of surplus landslide potential in the landscape. 239 

 240 

  241 



 242 

Fig. 1. Slope stability as a function of  slope gradient and colluvium depth, for some typical 243 

Appalachian soil strength parameters. 244 

 245 



 246 

Fig. 2. Field area relief map of Macon County, North Carolina (USA), showing locations of 257 247 

surveyed hollows and 52 shallow landslides from the North Carolina landslide database 41. Map 248 

was generated using ArcMap 10.2.1 (http://desktop.arcgis.com/en/arcmap). 249 



 250 

Fig. 3 Uncertainty of soil-tile-probe-estimated colluvium depths, as a function of definitive 251 

colluvium depths measured in excavation pits. A) Data attained from the maximum of 20 probed 252 

depths, B) Data attained from the maximum of 3 probed depths (generated via Monte Carlo 253 

simulation using data shown in A). 254 



 255 

Fig. 4. Model input distributions of hillslope material properties, hollow geometry and collvuial 256 

depths constrained for Appalachian colluvial hollows. Note that the use of a hollow concavity 257 

variable allows the gradient of hollow side-slopes to be expressed as a function of the hollow 258 

axis gradient, where the hollow concavity is the ratio of the hollow axis gradient to the hollow 259 

side-slope gradient. In this way these two components of the hollow geometry – axis and side-260 

slope gradients -  are varied co-dependently rather than independently, producing distributions of 261 

hollow geometries consistent with our observed hollows. 262 



 263 

Fig. 5. Plots of landslide potential as a function of pore pressure event size, for upper and lower 264 

bound estimates of soil creep transport coefficient (D ) for the Southern Appalachian 265 

Mountains23. Using the same return periods as shown in Fig. 3. (A) D = 6.5 . (B) D =10.0 .  266 

  267 



 268 



 269 

Fig. 6: A: Maps of the number of soil saturation days for two Southern Appalachian catchments 270 

in our study area, derived from ecohydrological modelling using RHESSys for 2004, when 271 

landslide-producing Hurricanes Francis and Ivan occurred 40. Hollow apex regions have been 272 

mapped through interpretation of 1 and 6 m LiDAR topographic data. Maps were generated 273 

using QGIS 2.12.0-Lyon (https://www.qgis.org). B: Cumulative distribution of the number of 274 

days on which hollow apex regions are completely saturated. During 2004, 95 % of hollow axes 275 

display full saturation. 276 

 277 

 278 

Fig. 7: Precipitation data used in model simulations. A) Daily precipitation record taken from the 279 

Coweeta LTER from 1937 to 2012. (http://climhy.lternet.edu/plot.pl) B) Distribution of daily 280 

precipitation from A, showing a fitted gamma distribution. C) Synthetic annual maximum daily 281 

precipitation distribution, generated from the gamma distribution shown in B, with observed 282 

maximum annual daily precipitations shown for comparison. 283 

 284 

  285 



 286 



 287 

Fig. 8: A: Timeseries of synthetic precipitation events, landslide frequency and landslide 288 

potential. B: Same timeseries as in A, with a 10 % decrease in model time-step, to simulate a 10 289 

% increase in precipitation event frequency. C: Same timeseries as in A, with a 10 % decrease in 290 

model time-step to simulate a 10 % increase in precipitation event frequency, and an 11 % 291 

increase in model precipitation intensity. 292 

 293 
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