Supplementary Information

Development of dopant-free conductive bioelastomers

Cancan Xu^{1,2}, YiHui Huang^{1,2},Gerardo Yepez³, Zi Wei⁴, Fuqiang Liu⁴, Alejandro Bugarin³, Liping Tang^{1,2} & Yi Hong^{1,2*}

¹Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA

²Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center,

Dallas, TX 75093, USA

³Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA

⁴Department of Material Science and Engineering, University of Texas at Arlington, Arlington,

TX 76019, USA

***Corresponding author:** Yi Hong, <u>yihong@uta.edu</u>, Tel: +1-817-272-0562; Fax: +1-817-272-2251.

Supplementary Figure S1. Cyclic stretching of DCPU-0.1/1 and DCPU-0.2/1 at 30% and 300% deformations.

Supplementary Figure S2. Scanning electron micrographs of mouse 3T3 fibroblasts cultured on PU-trimer, DCPU-0.1/1, DCPU-0.2/1 and PU-COOH films at day 5.

Supplementary Video Legend

Supplementary Video S1. DCPU film knotting and stretching, and scaffold compression, which exhibit the softness, stretchability, elasticity and processability of the DCPU.