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Additional file 1: Algorithm Development and Rationale for the Singular Value Decomposition

(SVD) Filter

Most experimental techniques to isolate or otherwise manipulate specific cell types require only one or

two marker genes. On the other hand, recent computational deconvolution algorithms with the best

performance for rare and difficult-to-isolate cell types [1, 2] require very large training sets of positive

and negative control genes to define any cell type. This limitation makes these algorithms difficult to

apply, and prevents their application to cell types where only a few cell-specific marker genes are

known.  To develop a versatile and broadly applicable approach to find cell type-enriched genes, we

felt it essential that the algorithm be accurate using only a small number of query genes (1-2 genes).

This section describes the development and rationale for the CellMapper algorithm; a more thorough

comparison between CellMapper and existing computational deconvolution algorithms can be found in

the main text.

For all  analyses presented in this section, we focus on tissue-specific gene expression (e.g. liver,

intestine, heart) rather than cell type-specific expression. The reason for this choice is that there are

large catalogs of tissue-specific genes to serve as a “gold standard” for performance evaluation [3].

This  strategy  also  allowed  us  to  perform  algorithm  development  and  optimization  using  an

independent test case (tissue-specific expression), and fix all algorithm parameters before moving on

to our primary interest (cell type-specific expression).

Initial Evaluation of Gene Co-Expression Algorithms 

As a first  attempt  to establish a method that  is accurate using only 1-2 marker genes, we tested

several algorithms that were originally developed to find genes in co-regulated biological pathways

(e.g. genes associated with the same GO terms) – GeneRecommender [4], MEM [5], and SPELL [6] –

as well as mutual information. Each of these algorithms are compatible with small training sets (1-2
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query  genes)  and  have  been  demonstrated  to  identify  genes  in  similar  biological  pathways;  we

hypothesized that one of these alternative algorithms might also be effective when applied to cell

types.

Each prospective algorithm was tested against a gold standard of tissue-specific genes defined in the

TiGER  (Tissue-specific  Gene  Expression  and  Regulation)  database  [3],  using  a  performance

evaluation  methodology  similar  to  Hibbs  et  al.  [6]. RefSeq  IDs  for  all  TiGER tissue  genes  were

downloaded from the TiGER website [3], and mapped to Entrez IDs using biomaRt [7]. We performed

individual  query-driven  searches  using  every  possible  combination  of  2  from  the  top  20  genes

classified as most tissue-enriched according to TiGER. For each algorithm, every search resulted in a

list of all genes ranked from predicted most tissue-specific to least tissue-specific. We then calculated

average gene rank across the lists generated by each query gene pair (excluding the query genes),

producing a master list for each TiGER tissue and each algorithm, ordered from best average rank to

worst. These lists were used to calculate precision (the number of TiGER genes identified at a given

rank divided by the total number of genes identified at the same rank) and recall (the number of TiGER

genes identified at a given rank divided by the total number of TiGER genes).

Unfortunately, none of the newer algorithms provided a consistent performance increase compared to

even  the  simplest  possible  approach:  Pearson's  correlation.  While  each  strongly  outperformed

correlation in some tissues, they all performed very poorly in many others (Additional file 3). Overall,

the relative performance of the five algorithms was highly variable between tissues, with no single

algorithm performing well across the board. This lead us to test alternative strategies to increase the

sensitivity of Pearson's correlation, and we found success when filtering the data based on singular

value decomposition (SVD), as described below.
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Rationale for the SVD Filter

Singular value decomposition (SVD; also related to principal component analysis) of an expression

matrix is the linear transformation of the original m genes by n arrays into an uncorrelated set of

“eigengenes” and “eigenarrays” [8] given by:

Xm×n = Um×nΣ n×nV n×n
T

where  X is  the  expression  matrix;  U and  V contain  the  eigenarrays  (right-singular  vectors)  and

corresponding eigengenes (left-singular vectors) of X, respectively; and Σ contains the singular values

of  X, or the relative importance (variance explained) of each eigenvector in the original expression

matrix. SVD is widely used in genomics data analysis because the eigengenes and eigenarrays often

have a biological interpretation. For instance, in the Lukk, et al. (2010) dataset used in this study, the

first  eigengene distinguishes hematopoietic  from solid  tissue samples  [9],  and the first  eigenarray

explains the corresponding genomic expression changes that accompany hematopoiesis.

While the top eigenvectors represent the strongest signals from the original expression matrix, they

are not the most informative for every biological question. For instance, in an SVD analysis of yeast

cell cycle microarrays, the first eigenvector explained over 90% of the gene expression data, yet the

second and third eigenvectors contained most of the oscillating cell cycle gene expression signal [8].

The first eigenvectors can also relate to systematic technical noise such as lab effects [8, 10]. Finally,

the strongest signals in a large meta-analysis of diverse samples will be dominated by the types of

experiments performed most often in the literature; almost a third of the Lukk, et al. (2010) dataset

contains  microarrays  from breast  or  breast  cancer  [9].  This  sampling  bias  will  disproportionately

impact the first eigenvectors, while later eigenvectors may contain relevant information from biological

conditions sampled less frequently. To increase the influence of potentially informative signatures from
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the later eigenvectors, we filtered the data by adjusting the relative weight of each eigenvalue.

SVD Filter, Part 1: Flattening the Eigenvalues

One possibility would be to posit that each eigenvector has an equal chance of being informative, and

weight  all  eigenvectors  equally.  The  gene  co-expression  algorithm  SPELL effectively  takes  this

approach  [6],  by  examining  correlations  between  genes  in  eigenarray  space.  However,  earlier

eigenvectors contain a greater signal to noise ratio, and so weighting them equally with the lower (and

noisier) eigenvectors may result  in overemphasis of noise in the later eigenvectors. Therefore, we

examined filters of the form:

σ k ' = σk
α

which  varies  smoothly  between  no  filter  (α =  1)  to  completely  equalized  eigenvalues  (α =  0;

comparable to SPELL). Additional file 3a shows how AUPR varies as a function of α. The vast majority

of tissues show an increase in AUPR for most values of  α, and many demonstrate an increase in

AUPR even as α approaches 0. We selected α to be 0.5 because this resulted in an improved AUPR

for 25 out of 30 tissues (p = 3.5 x 10-7, Wilcoxon signed rank test), and never lead to a substantial

decrease.

SVD Filter, Part 2: Filtering Eigenvectors that do not Differentiate the Query Genes

The above filter assumes that there is no way to identify which eigenvectors will best distinguish genes

expressed in a given cell type. However, as we are defining cell type genes based on their similarity to
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a set of query genes, we can expect that the most informative eigenvectors will be those where the

query genes are well separated from the rest of the genome. Therefore, we apply a soft filter to the

eigenvectors, multiplying each eigenvalue by a weight that increases as the query genes stand out

from other genes:

w k = ∑
g∈(query genes)

tanh(uk
g
)

where uk
g  is the loading of gene g in singular vector k, normalized so that uk  has a mean of 0

across all genes with a standard deviation of 1. This weight plateaus when the query genes are at

least a standard deviation away from the mean value for an eigenvector, but approaches 0 as the

query  genes  tend  towards  the  mean.  Additional  file  3b  shows  that  this  query-driven  weighting

produces an increase in AUPR for almost all tissues regardless of the value of α (p = 4.4 x 10 -4 for α =

1, p = 9.3 x 10-4 for α = 0.5; Wilcoxon signed rank test). After establishing these two suitable filters for

ranking of tissue-specific genes, the same filters were applied to the identification of cell-type specific

genes.
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