
S1 Text Methodological Note 

In this supplementary text, we give more details about the estimation of the mixture 

model parameters, the seroprevalence function, and the age-specific proportions of 

seropositive individuals. 

 

Estimation of the mixture model for antibody data 

Definition of the mixture model for pre-vaccination antibody data 

We estimated a two-component hierarchical Bayesian mixture model [1], allowing 

for component-specific mixture parameters. The choice of a two-component mixture is 

motivated by the fact that the infection under study is in a pre-vaccination equilibrium, 

thus we do not expect a large heterogeneity in the antibody counts of the seropositive 

individuals, as it occurs with post-vaccination infections [2,3]. The first component is the 

distribution of the antibody counts of the susceptible and the second component is the 

distribution of the antibody counts of the immune. Assuming that mixture weights are 

dependent on age, the mixture model can be written as  

𝑔 𝑌#(𝑎) = 𝜋) 𝑎 𝑓) 𝑌#(𝑎) 𝝃# ,
-

)./

 

where 𝑌# = log/3(𝑂𝐷# + 1) is the individual antibody count, 𝑎 denotes 

individuals’ chronological age, 𝑓 𝑌# 𝝃) , 𝑘 = 1,2, are the mixture components of the 

model with density function 𝑓, 𝜋) 𝑎 , 𝑘 = 1,2, are the age-dependent mixture weights of 

each component, and, finally, 𝜉), 𝑘 = 1,2, are the vectors of parameters to estimate [4].  

In order to assign each individual to one of the components, based on his antibody 

count, we introduce a latent age-dependent indicator variable 𝑍#(𝑎), which represents the 

unknown infection status of individual with age 𝑎 [5], and has the following Bernoulli 

distribution: 



𝑍#(𝑎) =
1 with	probability	𝜋(𝑎) seropositive,
0 with	probability	1 − 𝜋(𝑎) seronegative. 

This classification variable has the same meaning of the current status data 

determined by the cut-off approach. The probabilities associated with the two events, 

𝜋(𝑎) and 1 − 	𝜋(𝑎), are the mixing weights of the immune and the susceptible 

components, respectively, and govern the assignment of the individual cases to each of 

the components. In particular, 𝜋(𝑎) is the probability that an individual in the population 

belongs to the immune component and can be interpreted as the seroprevalence in the 

population [6]. 

 

Estimation of the mixture parameters 

Different densities for the distribution of the data can be taken into account to 

model the data. An obvious choice is the Normal distribution [7], which is a reasonable 

assumption mostly for the susceptible component. However, since it has been reported 

that, for some infections, the immune component might be characterized by skewness 

(longer tails), other distributions that allow for it should be considered [8,9]. Possible 

distributions are, for instance, the Skew-Normal distribution, which allows for skewness, 

the Student’s t distribution, which allows for thicker tails, or the Skew-t distribution, 

which accounts for both deviations from normality [10]. Hereafter, we focus on the 

Skew-Normal distribution, used to model the antibodies in the main manuscript, as data 

inspection reveals some degree of positive skewness in the immune component. 

The Skew-Normal distribution [11] is an extension of the Normal distribution that 

allows for skewness in the data. The probability density function (pdf) of this distribution 

is given by 
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where 𝜙 and Φ are the pdf and the cumulative density function of the standard 



normal distribution, respectively. The parameters 𝜇 and 𝜎 are the location and the scale 

parameters, respectively, and 𝛼 is the skewness parameter, which can lead to a skewness 

coefficient in the interval [-0.9953, 0.9953].  

In order to fit a Bayesian mixture model with skew-normally distributed 

components, we use a stochastic representation of the distribution, based on a random-

effect model [10]. We define the variable 𝑌 = 𝜇 + 𝜎𝛿𝑆 + 𝜎 1 − 𝛿-𝜀, where 𝑆 is a 

random effect with truncated Normal distribution, 𝑆~𝑇𝑁 3,Y (0,1), 𝜀 is the measurement 

error with Normal distribution, 𝜀~𝑁(0,1), independent from 𝑆, and 𝛿 = 𝛼 1 + 𝛼-. In 

order to implement the Bayesian approach, the parameter vector 𝜽) =

(𝜇), 𝜎)𝛿), 𝜎) 1 − 𝛿)-) is parameterised as 𝜽)∗ = (𝜇), 𝜓), 𝜔)) [10]. Hence, the skew-

normal mixture model for 𝑌#(𝑎)	can be rewritten as a normal mixture model with the 

following parameters:  

𝑔 𝑌#(𝑎) = 𝜋) 𝑎 𝑁 𝑌#(𝑎) 𝜇) + 𝜓)𝑆#, 𝜔)- .
-
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The parameters 𝜎)- and 𝛼) can be recovered through 𝜎)- = 𝜔)- + 𝜓)- and 𝛼) =

𝜓) 𝜔). For the prior distributions of the parameters 𝜇), 𝜔), and 𝜓), we choose the 

following flat distributions [5]:  

𝜇)~𝑁(𝑚), 𝜏) 𝜁)),	with	𝜇/ ≤ 𝜇-; 

𝜏) = 1 𝜔)- ~𝑈 0,1000 ; 

𝜓)~𝑁 0,100 . 

Finally, for the hyperparameters 𝑚)and 𝜁), we choose the following flat 

distributions: 

𝑚)~𝑁 0,1000 ; 

𝜁)~Γ 0.001,0.001 . 

 



Estimation of the seroprevalence and FOI 

The seroprevalence and the FOI function are estimated simultaneously with the 

mixture parameters and with the latent classification variables 𝑍#(𝑎).  

As prior distribution for the age-specific seroprevalence 𝜋) 𝑎 , we choose a beta 

distribution with age-specific parameters, namely, πf~Beta αf, βf , where 𝑗 = 1,2, … , 𝑛 

denotes the 𝑗th age group.  Since the seroprevalence model ought to guarantee a 

nonnegative FOI, we must constrain it to be monotonically increasing. This is 

accomplished by using the monotonicity constraint πfl/ ≤ πf ≤ πfm/, which performs a 

smoothing, averting cases where the seroprevalence first increases and then decreases (or 

vice versa).  

Combining the given beta prior distribution for πf, πf~Beta αf, βf , with the 

binomial data, 𝑋n~Bin(𝜋n, 𝑛n)  (given by the seropositive results according to the latent 

data 𝑍# 𝑎 , aggregated by age group, 𝑋n = 𝐼qr st ./
u
#./ ), it follows that the posterior 

distribution of the seroprevalence in age group 𝑗 is again a beta distribution, 

πf|𝑋n~Beta 𝑋n + αf, nf − 𝑋n + βf , under the same monotonicity constraint, πfl/ ≤ πf ≤

πfm/.  

Finally, we estimate the FOI by the following formula: 

𝜆n = 𝜋nx (1 − 𝜋n) ≅ [(πfm/ − πfl/	)/2] ⁄ (1 − 𝜋n). 

 

Estimation of the proportions seropositive 

After having obtained the estimates of the mixture parameters and of the 

classification variable, 𝑍#(𝑎), obtained as posterior means from the posterior distribution 

of the parameters, we need to classify the components either as susceptible or as immune, 

and then assign the individuals to one of the two components.  



First, according to the estimated location parameters 𝜇), we label each component 

either as susceptible or immune: the component with the higher value of 𝜇) will be 

labelled as the “immune” component, the other one as the “susceptible” component. 

Second, we assign each subject to the component for which the posterior mean of 

its classification variable is larger than 0.5: this means that each observation is assigned to 

the component for which it has the higher probability of belonging.  

Finally, when each individual has been classified either as susceptible or immune, 

one can estimate the proportions seropositive per age group in a similar way to what it is 

done with the binary data obtained through the cut-off approach, i.e., by dividing the 

number of individuals assigned to the immune component 𝑍# 𝑎 = 1  in each age group 

for the total number of individuals in the age group. 
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