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1 Supplementary Methods

1.1 Experimental Methods
1.1.1 Sample collection

Buffy coats from 60 healthy donors were obtained from Indiana Blood Center (Indianapolis, IN,
USA). Only individuals self-reported as currently healthy, not under medication were included
in the study. In addition, each donors blood was tested for standard blood-borne pathogens,
and samples were used only if they tested negative for all of pathogens assessed. A signed
written consent was obtained from all of the participants and the project was approved by the
ethics committee at the CHU Sainte-Justine (protocol #4022). All individuals recruited in this
study were males of African-American (N=30) or European-American (N=30) descent between
the age of 18 and 55 years old. We decided to focus on only one sex to avoid the potentially
confounding effects of potential sex-specific differences in gene expression levels on immune
responses to infection.

1.1.2 Bacterial preparation

We infected macrophages with two bacteria, Salmonella typhimurium and Listeria monocyto-
genes . The day prior to infection, aliquots of Salmonella typhimurium and Listeria monocy-
togenes were thawed and bacteria were grown overnight in Tryptic Soy Broth (TSB) media.
Bacterial culture was diluted to mid-log phase prior to infection and supernatant density was
checked at OD600.

1.1.3 Isolation and infection of macrophages

Blood mononuclear cells were isolated by Ficoll-Paque centrifugation. Monocytes were puri-
fied from peripheral blood mononuclear cells by positive selection with magnetic CD14 Mi-
croBeads (Miltenyi Biotech). Monocytes were then cultured for 7 days in RPMI-1640 (Fisher)
supplemented with 10% heat-inactivated FBS (FBS premium, US origin, Wisent), L-glutamine
(Fisher) and M-CSF (20ng/mL; R&D systems). Cell cultures were fed every 2 days with com-
plete medium supplemented with the cytokines previously mentioned. The day before the infec-
tion, macrophages were harvested to check their differentiation/activation status by flow cytom-
etry, using antibodies against CD1a, CD14, CD83, and HLA-DR (BD Biosciences). Only sam-
ples presenting the expected phenotype for non-activated macrophages (CD1a+, CD14+, CD83,
and HLA-DRlow) were used in downstream experiments. Macrophages were then re-plated and
let to rest for 20-24 hours before the actual infection experiment was performed. Macrophages
were infected at a multiplicity of infection (MOI) of 10:1 for Salmonella typhimurium and an
MOI of 5:1 for Listeria monocytogenes. A control group of non-infected macrophages was
treated the same way but with only medium without bacteria. After 2 hours in contact with the
bacteria, macrophages were washed and cultured for another hour in the presence of 50 µg/ml
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gentamycin in order to kill all bacteria that could be present in the medium. The cells were
then washed a second time and cultured in complete medium with 3µg/ml gentamycin for an
additional 2h and 24h, which are the timepoints to which we refer to in the main text.

1.1.4 BrdU Cell Proliferation Assay

Macrophages and LCL cells were cultured and infected as described above. The amount
of 5-bromo-2′-deoxyuridine (BrdU) incorporated into the cells was measured following the
manufacturer’s recommendations (BrdU Staining Kit for Flow Cytometry FITC, eBioscience).
Briefly, 5× 105 cells were cultured in the presence of BrdU (10 µM) during 2h and 24h after
infection. Incorporation of BrdU was measured with an Anti-BrdU FITC Antibody. Flow-
cytometric analysis was done with the BD FACSCaliburTM.

1.2 Whole Blood Sample Collection and Stimulation
Whole blood was obtained from healthy adult humans (6: 3 males, 3 females, CHU Sainte-
Justine), common chimpanzees (6: 3 males, 3 females, Texas Biomedical Research Institute),
and rhesus macaques (6: 3 females, 3 males, Yerkes Regional Primate Center). Human samples
were acquired with informed consent and with ethics approval from the Research Ethics Board
CHU Sainte-Justine (#3557). A signed written consent was acquired from each human par-
ticipant in the study. Non-human primate samples were humanly acquired in accordance with
individual institutional IACUCC requirements. For all species 1 ml of blood was drawn into
a 2ml media-containing tube (Truculture tube, Myriad, US) spiked with 3ug of ultrapure LPS
from Escherichia coli O111:B (Invivogen, USA) suspended in 60 ul of endotoxin-free water, or
60 ul of endotoxin-free water (negative control). Samples were stimulated with 1ug/ml LPS,
at 37C for 4 hours. Total blood leukocytes were isolated via red blood cell lysis buffer and
centrifugation at 800x(5 Prime, USA), before being chemically lysed by rigorous vortexing in
Qiazol (Qiagen, USA) and frozen at -80C.

1.2.1 RNA extraction, library preparation, and sequencing

Total RNA was extracted from the control and infected/treated samples using the miRNeasy kit
(Qiagen), with a DNaseI on-column treatment. RNA quantity was evaluated spectrophotomet-
rically, and the quality was assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies).
Only samples with no evidence for RNA degradation (RNA integrity number > 8) were kept
for further experiments. RNA-sequencing libraries were prepared using the Illumina TruSeq
protocol. Once prepared, indexed cDNA libraries were pooled (6 libraries per pool) in equimo-
lar amounts and the majority were sequenced with single-end 100bp reads on the Illumina
HiSeq2500 (9 2hr libraries and all 18 24hr libraries were sequenced with single-end 101 bp
reads). This resulted in a mean of 35 million reads per library (Table S1).
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1.2.2 3’RNA library preparation

We used Smart-3SEQ (Foley et al, manuscript in preparation), a modified version of the 3SEQ
method (1). Specifically, the preliminary poly(A) enrichment was omitted and the addition
of the second sequencing adapter by dsDNA ligation was replaced with a template-switching
cDNA synthesis reaction (2).

1.2.3 miRNA libraries & sequencing

miRNA libraries were prepared using the Illumina TruSeq Small RNA library protocol.We mul-
tiplexed 36 libraries per lane and sequenced the pool in two lanes with single-end 100bp reads.
We obtained an average of 9.6 million raw reads per sample with a minimum yield of 5 million
reads.

1.2.4 Assessing U1 and totalRNA concentrations

To investigate the possibility of telescripting, we used qPCR to measure the levels of U1 snRNA
in our samples. Telescripting posits that there is a delay in the levels of U1 snRNA relative to im-
mediately increased production of nascent mRNA. We used qRT-PCR procedures and primers
as described in (3) to quantify levels of U1 snRNA and 5s rRNA (as a control gene, under the
assumption that rRNA levels do not change). Changes in 5s rNRA concentrations were cal-
culated by taking the ∆CT value from qPCR measurements across 20 samples. Relative U1
snRNA concentrations were calculated by taking the ∆∆CT values from qPCR measurements
across 20 samples, where U1 snRNA is measured relative to 5s rRNA concentrations in the
same samples.

We were unable to measure nascent RNA levels, but used total RNA concentrations as a
proxy. Total RNA concentrations were estimated from Nanodrop measurements of RNA ex-
traction yields across all 60 samples in our study. All samples (both non-infected and infected)
were plated at exactly the same macrophage cellular density at the start of the experiment and
we have confirmed that these macrophages do not proliferate either before or after infection
(Figure S12). While we can therefore rule out increased numbers of cells causing increase to-
tal RNA yields in the infected samples, we can not rule out cell death causing fewer numbers
of cells from which to extract RNA in the infected samples. Thus, we believe our measure-
ments of increased total RNA concentration are conservative relative to the actual increase in
total RNA possibly occuring. While only 1% of total RNA is mRNA, our observations of an
approximately 10% increase in total RNA could be caused by a 2-4 fold increase in mRNA
concentrations, consistent with (3).
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1.3 Computational Methods
1.3.1 Quantifying gene expression data

Adaptor sequences and low quality score bases (Phred score < 20) were first trimmed using
Trim Galore (version 0.2.7) (for the MISO analyses, this step was skipped since MISO requires
all reads to be the same length). The resulting reads were then mapped to the human genome
reference sequence (Ensembl GRCh37 release 65) using TopHat (version 2.0.6) and using a
hg19 transcript annotation database downloaded from UCSC (date: 2011-08-30) (4). We as-
sessed the quality of our RNA-seq libraries and DNA contamination by using RNA-SeQC (35)
to calculate the rate of intergenic, intragenic, exonic, and intronic coverage in all of our RNA-
seq libraries. We see that 98% of mapped reads map to intragenic regions, with only 2% of reads
mapping to intergenic regions consistently acorss non-infected, and both sets of infected sam-
ples. Furthermore, 93% of reads map to annotated exons. Together, these metrics indicate that
there is no systematic bias in genomic DNA contamination between our infection conditions.

Gene-level expression estimates were calculated using featureCounts (version 1.4.6-p3) (5).
Transcript-level expression values were obtained using RSEM (6) and a reference-free aligner,
Kallisto (7). For the RSEM analysis we started by mapping reads against the genome using
STAR (version 2.4.1c) (21) in order to obtain aligned reads in transcriptome coordinates. The
following parameters were used for index generation (other than default):
–genomeSAindexNbases 2
–genomeChrBinNbits 14
–sjdbOverhang 99

For the alignment we used the following options specifically recommended for downstream
analyses with RSEM:
–outSAMattributes NH HI
–outFilterMultimapNmax 20
–outFilterMismatchNmax 999
–outFilterMismatchNoverLmax 0.04
–alignIntronMin 20
–alignIntronMax 1000000
–alignSJoverhangMin 8
–alignSJDBoverhangMin 1
–quantMode TranscriptomeSAM
–runThreadN 12.

Both RSEM and Kallisto were run using default parameters considering the mean (178bp)
and standard deviation (58bp) of insert sizes across our RNA-seq libraries.
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1.3.2 Differential gene expression following infection

We used DESeq2 (8) to identify genes with significant changes in their expression levels upon
infection.The analyses were limited to a set of 14, 954 well-annotated Ensembl genes which
showed a median gene-expression level of at least 10 reads in at least one of the experimental
conditions. For each infection condition, we compared the gene expression levels of the 14, 954
genes between the 60 non-infected and 60 infected samples using the generalized linear model
of DESeq2. Specifically, we used the likelihood ratio test in DESeq2 to capture the difference in
likelihood between the full and the reduced model, where the African-American admixture es-
timate, treatment (infected or non-infected), and batch number for each sample made up the full
model covariates, while treatment is removed from the full model design to yield the reduced
model. To call a gene significantly differentially expressed, we required a FDR-corrected p-
value < 0.001, corresponding to the treatment variable, and an absolute log2 fold change of
mean expression level greater than 0.5. Note that within the above-mentioned differential ex-
pression analysis process, and as the libraries may have been sequenced to different depths,
raw read counts were normalize by DESeq2-calculated size factors so as to make the samples
comparable.

1.3.3 Differential isoform usage (DIU) following infection

To detect genes with differential isoform usage between two groups of non-infected and infected
samples, a multivariate generalization of the Welch’s t-test is applied (9). To this end, we
focused on 11, 353 genes out of the above-mentioned 14, 954, which have at least two annotated
isoforms and are expressed, in terms of RSEM-estimated gene-level TPM values, in at least
half of the samples in each experimental condition. The proportional abundances of each target
gene’s isoforms are then calculated using RSEM estimations of transcript-level TPM values.
Specifically, assuming that the target gene has D isoforms, the relative isoform usage for this
gene is denoted by a vector of size D, with its ith element being the proportional abundance of
isoform i. Afterwards, an statistical hypothesis test is performed to verify whether the means of
two multivariate distributions are equal between the non-infected and infected groups. Suppose
that the first group is the group of non-infected samples, and the second group refers to the
samples taken from infected cells. Assume that ni samples have been collected for group i, and
let πij = (πij1, · · · , πijD) denote the vector of proportional isoform abundance for sample j
of group i, with i ∈ {1, 2} and j ∈ {1, · · · , ni}. Note that

∑D
d=1 πijd = 1, where πijd is the

relative isoform usage associated with isoform d. The relative isoform usage data is a type of
compositional data (10), which are vectors representing proportions of a whole that sum to a
constant k (in this case, k = 1). The space of compositional data with size D is mathematically
defined by

SD =

{
(x1, · · · , xD)

∣∣∣ xd > 0 ∀ d ∈ {1, · · · , D},
D∑
d=1

xd = k

}
,
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where SD is an open simplex (i.e., a generalization of the notion of a two-dimensional trian-
gle to higher dimensions) (11). It follows that SD is not a vector space, since the proportions
having a fixed sum leads to dependency between relative isoform usage values within each sam-
ple. In fact, the approaches taken in the statistical analysis of compositional data are majorly
affected by this characteristic. For one thing, the familiar Euclidean geometry cannot be ap-
plied when dealing with compositional data; in particular, although one is used to computing
the distance between two real vectors with the standard Euclidean metric, it is not the proper
metric to use for compositional data. To illustrate, consider the following pairs of composi-
tions: {(0.25, 0.05, 0.7), (0.25, 0.1, 0.65)} and {(0.25, 0.5, 0.25), (0.25, 0.55, 0.2)}. The Eu-
clidean distance between the compositions in the first pair equals that of the second pair, as the
element-wise difference between the compositions is (0, 0.05,−0.05) for both pairs. However,
the second component has doubled in the first pair, while it has only increased by ten percent in
the second pair. The fold changes associated with the third components are more comparable
between the pairs (0.9 and 0.8 for the first and the second pairs, respectively). In other words,
while the Euclidean distances between compositions of both pairs are equal, fold changes imply
that the actual distance is larger for the first pair. Therefore, the relative variation of components,
rather than their absolute differences, provide the basis to the statistical analysis of composi-
tional data. A commonly-used geometry for compositional data is the Aitchison geometry (10),
which lends a linear vector space structure to the open simplex and provides us with a way to
work with compositional data that is analogous to the real space. Although any multivariate
statistical analysis on compositional data can be performed using this vector space structure, it
is not easy to follow and sometimes even difficult for the trained eyes. As a result, it is more
straightforward to use alternative methods based on transformations of compositional data to
the familiar real space. For instance, Aitchison (12) proposes a couple of transformations on
compositional data, the most important of which are the additive log-ratio transformation (alr)
and the centred log-ratio transformation (clr). Neither of these transformations are associated
with an orthogonal coordinate system in the simplex; consequently, Egozcue et al. (11) intro-
duce the isometric log-ratio transformation (ilr), which maps the log of a given composition to
a real vector of size D− 1, using a set of D− 1 orthonormal vectors as the basis for SD. As the
distance-preserving ilr transformation removes the inter-dependency between vector elements
for each sample, it is yields vectors in RD−1, for which the familiar Euclidean geometry can
easily be adopted.

Since there exist more than one orthonormal basis for the simplex, the ilr transformation is
not unique. The specific one used in this paper is as follows (11). For any x = (x1, · · · , xD) ∈
SD,

ilr(x) = log(x)× U,

where U = [U1, · · · , UD−1] is the D × (D − 1) orthonormal basis, with Ui ∈ RD denoting its
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ith column:

Uji =


1
i

√
i
i+1
, if j ≤ i

−
√

i
i+1
, if j = i+ 1

0, otherwise

for j ∈ {1, · · · , D}.
Before applying the ilr transformation on relative isoform usage vectors, the statistical hy-

pothesis test for differential isoform usage between the non-infected and infected groups is
initially given by

H0 : µπ1 = µπ2
H1 : µπ1 6= µπ2 ,

where µπi is the mean relative isoform usage for group i. To proceed with the transformation
and statistical test, the following two steps are implemented to prepare the data. First, any
isoform with an average relative abundance of less than 0.05, across samples, in both groups
is removed from statistical testing analysis, to yield biologically meaningful conclusions about
DIU. Second, any relative isoform usage value that is remained after this elimination, and is
estimated as zero, is then replaced by 0.025 so that all the samples belong to the open simplex
SD. Afterwards, the ilr-transformation is performed on all the samples of both groups, and the
differential isoform usage test is modified to

H0 : µilr(π1) = µilr(π2)

H1 : µilr(π1) 6= µilr(π2),

where µilr(πi) is the mean of ilr-transformed relative isoform usage vectors of group i. Similar
to the approach taken by Niu et al. (13), we assume that the relative isoform usage data after
ilr-transformation has a multivariate normal distribution on RD−1 as follows:

ilr(πi1), · · · , ilr(πini
) ∼ ND−1

(
µilr(πi),Σi

)
for i = 1, 2,

where Σi is the covariance matrix for group i, with Σ1 6= Σ2. Consequently, differential iso-
form usage boils down to testing the equality of means of two multivariate normal populations,
with distinct covariance matrices. This problem is referred to as the multivariate Behrens-Fisher
problem, and different approaches have been proposed to tackle the multi-dimensional case. In
this paper, we adopted the method proposed by Krishnamoorthy et al. (14), which reduces to the
well-known Welch’s t-test for one-dimensional data (or equivalently, when D = 2) (9). This
test, referred to as TKY herein, cannot be employed when D− 1 ≥ min{n1, n2} (a case that re-
sults in either of the estimated covariance matrices to be singular and non-invertible). This is not
a problem in our analysis, since we have a large number of samples per group (n1 = n2 = 60).
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The results of differential isoform usage test is reported in Table S4, where estimation of iso-
form expression values was done using the RSEM software package. To address DIU effect
sizes, Table S4 also includes columns representing the maximum change in relative isoform
usage across transcripts of each gene upon either infection. Furthermore, Figure S1C compares
these values between the DIU genes at 1% FDR and the background of all tested genes, de-
picting a significant shift of changes in relative isoform usage towards larger values for DIU
genes (Mann-Whitney U test, P<10−15 for both Listeria and Salmonella). To further study the
effect of infection on isoform usage, we mathematically define isoform dominance by consid-
ering the isoforms with the highest and the second highest relative abundance (isoform 1 and
isoform 2, respectively) and label isoform 1 dominant if we observe at least a 0.15 difference
between the relative abundances of isoform 1 and isoform 2. According to this definition, 75%
of DIU genes have a dominant isoform prior to either infection. Following infection with Liste-
ria and Salmonella, 6.2% and 10.2%, respectively, of the aforementioned genes switch to using
an alternative dominant isoform. Figure S1E illustrates the percentage of genes with a domi-
nant isoform prior to infection and the proportion of genes switching to an alternative dominant
isoform following infection, at different relative abundance thresholds.

We adopted a second method alongside TKY to back-up our numerical results. This method,
introduced by Srivastava et al. (15) and labeled TSKK here, does not require the estimated co-
variance matrices to be invertible. In addition, Chen et al. (16) propose another method for
tackling this problem, relaxing the assumption of multivariate normal distribution for the sam-
ples. This method has been proven, theoretically by Srivastava et al. (15) and using simulation
by Niu et al. (13), to be inferior to TSKK in terms of power. As a result, we focus our attention
solely on TKY and TSKK . A permutation approach is adopted to control for TSKK type I error,
as suggested by Niu et al. (13). This issue basically arises from the fact that the null distribution
of the test statistic asymptotically converges a standard normal, as (n1, n2, D)→∞ (see (15)).
For each test (or target gene), we ran 2000 permutations, obtained by shuffling the group labels
of samples. For each of the permutations, we computed a new p-value with the new group labels
and reported the proportion of p-values less than or equal to the original p-value (with correct
group labels) as the modified p-value for that gene. A Spearman correlation of 0.84 and 0.89
was observed between p-values of TKY and p-values of TSKK (with permutations) for infection
with Listeria and Salmonella, respectively.

Consistency between DIU results from RSEM and Kallisto isoform estimations. To as-
sess the robustness of our findings of differential isoform usage (DIU), we tested for DIU us-
ing isoform-specific expression levels calculated with Kallisto (an alignment-free quantification
method (7)) at a relaxed FDR threshold of ≤ 5%. We observed a 74% and 78% agreement with
DIU genes identified using RSEM for Listeria and Salmonella respectively. This confirms that
the identification of DIU genes is largely robust to the method used for isoform quantification.

DIU results considering Transcript Support Level (TSL). We re-conducted the DIU analy-
sis taking into account TSL values, only retaining transcripts passing a conservative TSL filter of
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TSL <= 2. This obvisouly reduced the number of transcripts considered per gene and also the
number of genes tested; however, our new results signified consistency with the trends observed
in the initial DIU analysis. Specifically, testing 10222 genes in the new analysis, we observed
that among the genes with evidence for significant DIU after infection without considering TSL
values, 66% (Listeria) and 72% (Salmonella) were also identified as DIU (FDR<5%) when
constraining on TSL values (Fisher’s exact test, Psignificant overlap<10−15 for both infections).
This verifies that the detection of DIU genes is quite robust to directly adopting a TSL-type
metric, given that appropriate filtering steps have been performed beforehand instead. In par-
ticular, we limited our original DIU analysis to isoforms with an average relative usage of less
than 0.05 TPM across samples, in both groups (non-infected and infected). In fact, this is equiv-
alent to defining an empirical TSL-threshold based on the actual data, thus ensuring that several
samples show support for the transcripts in our analysis.

1.3.4 Isoform diversity

Diversity of a data set, which consists of distinct types of individuals, is defined as a function
of the number of types present and the evenness (uniformity) with which the individuals are
distributed among these types (17). Several diversity indices have been proposed to measure the
diversity of data sets. In this paper, Shannon entropy Hsh (also known as Shannon index (18))
was applied to measure the diversity of isoforms for each target gene before and after infection.
Specifically, for sample j of group i with D isoforms, Shannon diversity index is calculated by

Hsh := −
D∑
d=1

πijd log (πijd),

where Hsh quantifies the uncertainty in the prediction of next transcript type, if one is to se-
quentially observe the isoforms, belonging to the pool of transcripts for a specific gene. If all
isoforms are equally common, then Hsh = log (D), while Hsh → 0 if all abundance concen-
trates on only one transcript (Hsh ∈ (0, log (D)]). Therefore, to quantify the change in isoform
diversity after infection

∆Shannon :=
HI
sh −HNI

sh

log(D)

was used, with I and NI denoting the infected and non-infected sample, respectively. Posi-
tive and negative ∆Shannon values correspond to genes with an increase or a decrease in their
isoform diversity upon infection. We next tested for an association between DE genes and
genes showing a large change in isoform diversity following infection. To this end, all genes
were divided into 20 bins according to (an increasing order of) their ∆Shannon values, such
that all bins contain the same number of genes. To illustrate, bin one contained genes with
the lowest ∆Shannon values, which were negative, and bin 20 contained genes with the highest
∆Shannon values, which were positive. The enrichment of down-regulated or up-regulated DE
genes among the genes with extreme ∆Shannon values (i.e., very low and negative, or very high
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and positive values) was assessed using logistic regression. For instance, for the high ∆Shannon

case, all genes were classified into two categories based on whether they belonged to bins with
very high ∆Shannon values. Specifically, Ihigh∆ is an indicator function, the value of which equals
one if the target gene falls in any of the five bins with the highest ∆Shannon values (i.e., bins
16, 17, 18, 19, and 20) and zero otherwise. The corresponding logistic regression model was
then set up as follows:

log
P
{
Ihigh∆ = 1

}
P
{
Ihigh∆ = 0

} = β0 + β1X1 + β2X2,

where X1 (X2) is an indicator function of whether a gene is both DE and down-regulated (up-
regulated). Figure S3B depicts the log2 of ratio of odds for both low and high ∆Shannon among
the set of up-regulated, down-regulated, and all the DE genes, where the odds ratio for, say,
down-regualated DE genes is obtained by

exp(β1) =

P
{
Ihigh∆ = 1|X1 = 1

}
P
{
Ihigh∆ = 0|X1 = 1

}
P

{
Ihigh∆ = 0|X1 = 0

}
P
{
Ihigh∆ = 1|X1 = 0

}
 ,

with X1 = 1 indicating significant differential expression and down-regulation.
Alongside the Shannon diversity index, the Gini-Simpson diversity index (see (19))

HG = 1−
D∑
d=1

π2
ijd

was also adopted to measure the changes in isoform diversity and to verify the results ob-
tained with the Shannon index. A Spearman correlation of 0.94 and 0.95 was observed between
∆Shannon and ∆Gini values for infection with Listeria and Salmonella, respectively.

1.3.5 Analysis of alternative RNA processing events

Changes across individual RNA processing events were quantified using the MISO software
package (v0.4.9) (20) using default settings and hg19 version 1 annotations (downloaded from
the MISO website, http://miso.readthedocs.org/en/fastmiso/annotation.html). Events were used
for further downstream analyses if they were detected in both non-infected and infected con-
ditions in at least 90% of samples. For each sample, a percent spliced in (PSI) value was
calculated for each event. Differential RNA processing was estimated using MISO by pairwise
comparisons matched non-infected and infected samples to calculate a ∆Ψ value and a Bayes
Factor (BF ) for each sample-condition combination. Events were considered to be signifi-
cantly changing after infection if at least 10% (n >= 6) of samples had a BF >= 5 and the
|mean∆Ψ| >= 0.05 (Table S6).
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Analysis of RNA processing after 24hrs. To assess RNA processing changes at a longer
time-scale, six out of the 60 initial samples were sequenced after 24hrs of infection with a
similar study design (Listeria-infected condition, Salmonella-infected condition, and a matched
non-infected control that was also cultured for 24 hours). To account for differences in power
when using only 6 samples, samples sequenced at both 2 hours and 24 hours after infection were
analyzed independently of the larger batch of 2 hour samples. Specifically, for each event type,
events were used for further downstream analyses if they were detected in both non-infected and
infected conditions in 100% of samples at both timepoints. For each sample, a percent spliced
in (PSI) value was calculated for each event. Differential RNA processing was estimated using
MISO by pairwise comparisons of non-infected and infected samples (using the matched non-
infected sample from the corresponding timepoint) to calculate a ∆Ψ value and a BF for each
sample-condition-timepoint combination. Events were considered to be significantly changing
after infection if at least 50% (n ≥ 3) of samples had a BF ≥ 5 and the |mean∆Ψ| ≥ 0.05
(Table S6).

Analysis of RNA processing after infection with LPS across primates. RNA-seq reads
from human, chimpanzee, and rhesus macaque whole blood cells both before and after infec-
tion with LPS were mapped to the genomes of their respective species using Tophat (v2.0.6) as
specified above (4). For human samples, reads were mapped to the human genome reference
sequence (Ensembl GRCh37 release 65, transcript definition version is the same). For chim-
panzee samples, reads were mapped to the chimpanzee genome reference sequence (panTro4 -
downloaded from UCSC) using a pt4 transcript annotation database from Ensembl and supple-
mented with annotations derived from Barbosa-Morais et al. 2012 (23). For rhesus macaque
samples, reads were mapped to the rhesus macaque genome reference sequence (rheMac2 -
downloaded from UCSC) using a rm2 transcript annotation database from Ensembl and supple-
mented with annotations derived from Merkin et al. 2012 (24). Specifically, Tophat (22) was
used to map each sample, allowing for the discovery of novel junctions and isoforms in addition
to junctions already annotated in the provided annotation databases. Cufflinks was then used
to identify novel exons, junctions, and isoforms in each sample, and cuffmerge was used to
combine across all novel annotation sets. Finally, only isoforms with Cufflinks class codse of
”j” or ”=” were retained for a final annotation set. For more details, please see (24).

To assess the extent to which the RNA processing changes observed after infection with
Listeria and Salmonella in human macrophages are a ubiquitous characteristic of mammalian
response to infection, we estimated RNA processing changes in human, chimpanzee, and rhe-
sus macaque whole blood (a mix of white blood cells, with red blood cells lysed, see 1.1)
infected with lipopolysaccharide (LPS). Using a similar study design as used previously, for
each species, RNA from 6 samples were sequenced at both 2 hours and 24 hours after infec-
tion, paired with matched controls. For each RNA processing event type, events were used for
further downstream analyses if they were detected in both non-infected and infected condition
in 100% of samples at both timepoints. For each sample a percent spliced in (PSI) value was
calculated for each event. Differential RNA processing was estimated using MISO by pairwise
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comparisons of non-infected and infected samples (isng the matched non-infected sample from
the corresponding timepoint) to calculate a ∆Ψ value and a BF for each sample-condition-
timepoint condition. Events were considered to be significantly changing after infection if at
least 50% (n ≥ 3) of samples had a BF ≥ 5 and the |mean∆Ψ| ≥ 0.05 (Table S9).

One concern was that the transcript annotations for chimpanzee were quite poor, relative to
the well-annotated human and macaque transcriptomes. This resulted in a paucity of Tande-
mUTR events detected across all samples in chimpanzee. Thus, for chimpanzee TandemUTRs,
we used events that were detected in at least 1 individual, regardless of timepoint, in order to
have the power to detect a sufficient number of significantly changing TandemUTRs.

1.3.6 Inter-individual analyses

Candidate trans-regulatory factors were identified by correlating variation in genome-wide
RNA processing shifts and variation in the fold changes of gene expression levels across in-
dividuals. An individual-specific genome-wide RNA processing shift was measured by taking
the mean ∆Ψ across all events for each RNA processing category. For each gene expressed in
either non-infected or infected conditions, we calculated a Spearman correlation between the
fold changes in gene expression and the individual-specific mean ∆Ψ values. To assess sig-
nificance, we performed a 1000 permutations by scrambling the individual labels and assigned
a p-value based on frequency of a more extreme correlation value occuring in the permuted
data relative to the observed correlation value. P-values were then corrected by the Benjamini-
Hochberg method to arrive at an FDR. Functional categories for known RNA binding proteins
were assigned based on gene ontology annotations.

1.3.7 Enrichment of splicing regulatory elements

To search for splicing regulatory elements we considered kmers of length 6 that matched mam-
malian motifs identified by the following sources: exonic splicing enhancers (ESEs) from Fair-
brother et al. 2002 (25), exonic splicing silencers (ESSs) from Wang et al. 2004 (26), intronic
splicing enhancers (ISEs) from Wang et al. 2012 (27), and intronic splicing silencers (ISSs)
from Wang and Wang 2014 (28). For each skipped exon, we used both (1) the entire exon to
search for ESEs and ESSs or (2) the 100nt of intronic sequence upstream and downstream of
each exon to search for ISEs and ISSs. For each category of SREs, an enrichment score was
calculated as follows:

fold enrichment =

∑
kmersSRE/

∑
kmerstotal in significant SEs∑

kmersSRE/
∑
kmerstotal in non-significant SEs

Significance of each enrichment was assessed using a Fisher-exact test.
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1.3.8 Gene Ontology analyses

To test for enrichment of functional annotations among genes differently expressed upon in-
fection we performed a Gene Set Enrichment Analyses (GSEA) on a list of genes ranked by
p-values, as implemented in the GOrilla software tool (29).For all other GO-enrichment anal-
yses we used a custom script to test for enrichment of functional annotations among genes
significantly changing splicing in response to infection, in order to avoid significant gene ontol-
ogy terms with overlapping gene sets. Specifically, the script uses the gene ontology annotation
databases downloaded from the Gene Ontology Consortium website (30) and searches for the
gene ontology term with most significant enrichment of significantly changing splicing changes
relative to a background of all expressed genes with annotated splicing events of the same event
type. Genes that belong to the most significant gene ontology term are then removed from
the foreground and background sets of genes and the process is repeated iteratively until no
genes are left in the foreground set. P-values are computed using a Fisher-exact test and then
corrected using a Benjamini-Hochberg multiple test correction. For the gene ontology repre-
sentations in Figure 2B and Figure S9A, we used the REVIGO web interface (31) to summarize
the significant gene ontology terms (FDR ≤ 10%) into super-clustered of gene ontology terms.

1.3.9 Analysis of 3’RNA-seq data

Smart-3Seq (3’RNA-seq) reads were processed using in-house scripts. First, we processed the
reads to trim unique molecular identifiers (UMI) and polyA sequences from the ends of reads,
and retain only processed reads that are ¿20bp. Reads are then mapped using TopHat2 (4), with
the fr-secondstrand option. Mapped reads are filtered to remove PCR duplicates and sort by
UMI sequences. Mapped and processed reads that fall within Tandem 3’ UTR regions were
used to make a meta-gene plot of read density (normalized by million mapped reads) with a
smoothing window of 10bp. Reads in individual 3’ UTRs were used to calculate a ∆Ψ statistic,
where Ψ is defined as:

Ψ =

∑
3′readsextended∑

3′readscore +
∑

3′readsextended

1.3.10 Analysis of miRNA-seq data

After demultiplexing, sequences matching the 3′ adaptor sequence were identified and trimmed.
A minimum matching of the 6 first bases of the adaptor sequence was required, following which
we discarded all reads shorter than 16 or longer than 26 bases, corresponding to the known
length distribution of mammalian miRNAs. After these filtering steps, we obtained an average
of 5.8 million (minimum 3.1 million) clean, short reads per sample that were used for small
RNA quantification (Table S10).
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miRNAs quantification. Sequences were aligned to the human reference genome
(build GRCh37/hg19) using bowtie (v0.12.7) (32) allowing for 2 mismatches (-v 2) and reported
all best alignments for reads that mapped equally well to more than one genomic location (-a
best strata). We suppressed reads with more than 50 possible alignments (-m 50). On average,
96% of reads aligned to the human genome, of which 60% aligned uniquely. The remaining
40% of reads had more than one best alignment, which is expected given that miRNAs are
short and tend to occur in families that share highly similar sequences. To avoid cross-mapping
artefacts, we used a correction strategy that assigns weights to each of the candidate mapping
loci of multiply aligning reads, as we have described previously (33).

miRNA differential expression We used DESeq2 (8) to identify differentially expressed
miRNAs upon infection. Specifically, for each experimental condition we compared miRNA
expression levels between non-infected and infected samples at the same time point limiting the
analyses to miRNAs having an average expression higher than 10 reads in at least one of the ex-
perimental conditions. In order to increase power to detect differentially expressed miRNAs we
explored the paired nature of our data by specifying donor identity in our model. We corrected
for multiple testing using the Benjamini-Hochberg FDR method (Table S10).

Enrichment of miRNA target sites. All predicted miRNA target sites within annotated Tande-
mUTR core and core+extended regions were obtained using TargetScan (v6.2) (34). Further
analyses used target sites matching the following set of criteria: (i) the miRNA was expressed
(corrected count ≥ 4) in either the non-infected or infected condition, (ii) the TandemUTR re-
gion was expressed and met the criteria outlined in Supplementary Section 1.3.5, and (3) there
was at least 1 target site for a given miRNA in the extended regions of expressed TandemUTRs.
Following all of these selection criteria, we considered the target sites for 163 miRNAs in Lis-
teria and 161 miRNAs in Salmonella. Target site counts per region were normalized by the
length of the region to get the density of miRNA target sites. For each miRNA, we calculated
the fold enrichment of target site densities as follows:

fold enrichment =
mean(xi) for significant TandemUTRs

mean(xi) for non-significant TandemUTRs
,

where xi = target site density in the extended region of a 3’ UTR for miRNA i

The non-significant Tandem UTRs for the background distribution were chosen by matching the
distribution of relative GC contents (%GCcore/%GCextended) displayed by significant Tande-
mUTRs in order to account for possible biases due to differential sequence compositions. The
relative GC contents were chosen since the enrichment score inherently tests for the enrich-
ment in the extended region relative to the core region per 3’ UTR. Significance of each fold
enrichment was assessed using a Mann-Whitney U test between the mean density of target sites
for non-significant and significant UTRs. P-values for multiple testing using the Benjamini-
Hochberg FDR method.
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2 Supplementary Figures
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Figure S1: Differential isoform usage after infection. (A) Volcano plots of differential ex-
pressionafter infection with Listeria and Salmonella in the left and right panels, respectively.
−log10 p-values (y-axis) testing for differential expression are plotted against average log2 fold
changes in expression levels (x-axis) for genes that are not differentially expressed (black)
and genes that with significant differential expression after infection (FDR ≤ 0.1% and
|log2(fold change)| ≥ 0.5; blue). (B) Distribution of p-values for the differential isoform usage
test upon infection with Listeria and Salmonella. Expected distribution of p-values under the
null hypothesis of no significant difference between the mean relative isoform usage is shown in
grey. (C) A comparison of DIU effect sizes between DIU genes at 1% FDR (following infection
with Listeria in dark pink and Salmonella in gold) and the background of all genes (lighter col-
ors). Effect sizes are defined as maximum change in relative isoform abundances per gene upon
infection. (D) Distributions of Shannon diversity index (SDI) after infection with Listeria and
Salmonella. Null distribution (black dotted line) was generated by permuting samples across
conditions. (E) The percentage of genes with a dominant isoform before infection (left) and the
fraction of these genes where the dominant isoform changes after infection (right).
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Figure S2: Representative examples of immune-related genes with significant DIU after
infection. Heatmaps below each example represent the variation in isoform usage across the
60 individuals, where each vertical bar represents one individual. The dominant isoform in
non-infected samples is represented in emphgrey, while the predominant isoform in infected
samples is in a color. Darker bars represent increased relative usage, while lighter bars represent
decreased relative usage. 22



Figure S3: Gene expression and differential isoform diversity after infection. (A) Pro-
portion of genes with differential isoform usage (y-axis) among all genes (grey), differentially
expressed genes that are down-regulated after infection (orange), and differentially expressed
genes that are up-regulated after infection (green). (B) log2 fold changes (with standard error
bars) for odds of low ∆Shannon and high ∆Shannon among the set of all the differentially ex-
pressed genes, up-regulated differentially expressed genes, and down-regulated differentially
expressed genes, following infection with Listeria (dark pink) and Salmonella (gold).
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Figure S4: Variance in RNA processing across 60 individuals. Distribution of coefficient of
variation (x-axis) in ∆Ψ values for each isoform in a given RNA processing category.
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Figure S5: Two representative examples of genes with significant skipped exon changes
after infection. Sashimi plots for two genes, PTK2B and STK40, that have significant changes
in skipped exon usage both after 2 hours and 24 hours of infection with either bacteria.
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Figure S6: Relationship between 3’RNA-seq and RNA-seq data. Correlations between
TPMs from 3’ RNA-seq data (y-axis) and TPMs from RNA-seq data (x-axis).
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Figure S7: RNA processing changes 24hr after infection. (A) Proportion of significantly
changing events (x-axis) after 2 hours of infection (dark colors) and 24 hours of infection (light
colors) with either Listeria (top) or Salmonella (bottom). Numbers indicate the significant
events at corresponding timepoints using only the 6 individuals used for these cross-timepoint
analyses. (B) Distribution of ∆Ψ values (x-axis) for significantly changing events in each event
type after either 2 hours (top) or 24 hours (bottom) of infection.
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Figure S8: Relationships between RNA processing and gene expression changes after in-
fection. (A) Distributions of overall fold changes in gene expression (y-axis, log2 scale) for
genes that have significant splicing changes in each event type (colored boxplots) and genes
with no splicing changes after infection (grey). Gene expression values are calculated using ei-
ther full transcript models (top) or only constitutively included exons (bottom). (B) Distribution
of spearman correlations between the ∆Ψ of an event and the fold change in gene expression,
across individuals, for events that are not significantly changing after infection (left) and sig-
nificantly changing events (right). Solid lines represent the observed values and dotted lines
represent a distribution of correlations after permuting the correspondence between ∆Ψs and
fold changes in gene expression.
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Figure S9: Characteristics of significantly changing skipped exon events. (A) Significantly
enriched gene ontology categories for genes with significant skipped exon changes after infec-
tion. Color indicates the fold enrichment of the number of observed genes relative to the number
of genes expected to be in that category. (B) Fold changes in gene expression (y-axis, log2 scale)
after infection for 2 families of splicing factors (hnRNPs and SR proteins) relative to a back-
ground distribution of fold changes in all genes (C) Fold enrichments of splicing regulatory
elements (SREs) in exonic regions and surrounding intronic regions (± 100bp). SREs assessed
included exonic splicing enhancers (green in exons), exonic splicing silencer (red in exons),
intronic splicing enhancers (green in introns), and intronic splicing silencers (green in introns).
Enrichments were calculated separately for significantly included skipped exons (top) and sig-
nificantly excluded skipped exons (bottom). Shading of the bars indicates the significance of
the enrichment.
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Figure S10: Inter-individual variation of global shifts in alternative splicing. (A) Correla-
tions between the mean ∆Ψ values per individual for ALEs (x-axis) and TandemUTRs (y-axis).
(B) Spearman correlations between the mean ∆Ψ value per individual and the mean fold change
of gene expression per individual for corresponding genes.
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Figure S11: Identifying RNA binding factors that might be involved in trans-regulation of
RNA processing after infection. For both TandemUTRs (A) and Skipped exons (B), the top
panel is a scatter plot of Spearman correlations between the individual-specific mean ∆Ψ values
and individual-specific fold change of gene expression values for all expressed genes (grey) in
both Listeria (x-axis) and Salmonella (y-axis). Genes with significant correlations (FDR ≤
1%) in both Listeria and Salmonella conditions are plotted in black, and those factors with
known RNA-binding properties are colored by their functional category. The bottom panels
show distributions of the average Spearman correlation values for each of the RNA-binding
functional categories with significant correlations.
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Figure S12: Cellular proliferation after bacterial infection. BrdU cell proliferation assay in
macrophages (top panel) and LCLs (bottom panel) in non-infected cells and in cells infected
with Listeria or Salmonella for both 2 and 24 hours. BrdU incorporates into newly synthesized
DNA and therefore the quantity of BrdU incorporated into cells (x-axis) is a direct indication
of cell proliferation. No evidence for cellular proliferation was observed in macrophages, in
contrast to the high rates of proliferating cells observed in our positive control population of
LCLs.
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Figure S13: Density of miRNA target sites in 3′ UTR regions. Barplots in grey indicate Tan-
dem 3′ UTRs that are not changing after infection, while colored barplots indicate Tandem 3′

UTRs that are significantly changing after either Listeria (pink) or Salmonella (yellow) infec-
tions.
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Figure S14: Nucleotide composition of Tandem 3’ UTR regions. The distribution of GC
content in core (brown) and extended (blue) regions of Tandem 3’ UTRs that are either not
changing or significantly changing after infection (left panel). While there 3’ UTRs that are
significantly changing generally have greater overall GC content, this is true for both the core
and extended regions of the 3’ UTRs. Thus, the distributions of relative GC content when
comparing the regions is distributed around 1 for both significantly changing (yellow) and not
changing (blue) Tandem 3’ UTRs (right panel).
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Figure S15: Investigating effects of telescripting. Distributions of fold changes in 5s rRNA
(grey, n=20), U1 (green, n=20), and total RNA (yellow, n=60) concentrations after infection.
5s rRNA concentrations were calculated by taking the ∆CT value from qPCR measurements
across 20 samples. Relative U1 snRNA concentrations were calculated by taking the ∆∆CT
values from qPCR measurements across 20 samples, where U1 snRNA is measured relative
to 5s rRNA concentrations in the same samples. Total RNA concentrations were estimated
from Nanodrop measurements of RNA extraction yields across all 60 samples in our study. All
samples (both non-infected and infected) were plated at exactly the same macrophage cellular
density at the start of the experiment and we have confirmed that these macrophages do not
proliferate either before or after infection (Figure S12). There are no significant shifts in the
distribution of 5s rRNA or U1 snRNA fold changes after infection (t-test for null of µ = 1, both
P > 0.01 for 5s rRNA and both P > 0.2 for U1 snRNA), while the distribution of total RNA
fold changes are significantly increased after infection (t-test for null of µ = 1, P < 0.001 for
both Listeria and Salmonella samples).
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3 Supplementary Table Legends
Table S1: mRNA-seq statistics. Details of RNA-seq data for samples after infection at 2 hours
or 24 hours. Libraries were made as described in Supplementary Section 1.2.1.

Table S2: Gene Level Differential Gene Expression. Estimates of differential gene expres-
sion for the 14, 954 genes tested by DESeq2, as described in Supplementary Section 1.3.2.
Included are the log2 fold change estimates, p-values for differential expression, and Benjamini-
Hochberg adjusted p-values for differential expression between non-infected samples and both
Listeria and Salmonella samples.

Table S3: Gene Ontology Enrichments for Differential Expression. Enriched Gene Ontol-
ogy categories for genes that are differentially expressed, or show differential isoform usage
after infection. Gene Ontology analyses were performed using GSEA, as described in Supple-
mentary Section 1.3.8.

Table S4: Differential Isoform Usage. Estimates of differential isoform usage for the 11, 353
genes tested as described in Supplementary Section 1.3.3. Included are the changes in relative
isoform usage for the isoform with the greatest relative change after infection, the p-value and
Benjamini-Hochberg FDR for DIU using isoform expression levels calculated using RSEM,
and the FDR for DIU using isoform expression levels calculated using Kallisto.

Table S5: Change in Isoform Diversity after Infection. Estimates of Shannon diversity in-
dicies for 11, 353 genes both before and after infection with both Listeria and Salmonella, as
described in Supplementary Section 1.3.4.

Table S6: Differential isoform usage across 5 specific RNA processing categories. Estimates
of Ψ and ∆Ψ values calculated by MISO (Supplementary Section 1.3.5) for each individual for
each for the 5 different RNA processing categories assess in this study: alternative first exons
(AFE), alternative last exons (ALE), retained introns (RI), skipped exons (SE), and Tandem 3’
UTRs (TandemUTR). Also included are Bayes Factors testing for differential isoform usage
per event for each individual, mean ∆Ψ values across all individuals and individuals with sig-
nificant changes, and a column indicating whether an event was called significant based on the
criteria defined in Supplementary Section 1.3.5.

Table S7: Summaries of Significant RNA processing categories. A summary of the propor-
tion of annotated events that were detected and determined to be significant (according to the
criteria defined in Supplementary Section 1.3.5) for each condition and RNA processing cate-
gory. Included are tables for metrics after both 2 hours of infection and 24 hours of infection.

Table S8: Gene Ontology Enrichments for significant RNA processing changes. Top gene
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ontology categories for genes that have significant RNA processing changes after infection with
either Listeria or Salmonella. All tests were done using an iterative gene ontology analysis as
described in Supplementary Section 1.3.5 and gene names refer to UniProt gene accessions.

Table S9: Summary of Significant RNA processing categories following infection with
LPS, across primate species. A summary of the proportion of annotated evenst that were
detected and determined to be significant (according to the criteria defined in Supplementary
Section 1.3.5) for each species and RNA processing category following infection of primary
whole blood cells with LPS.

Table S10: miRNA mapping and differential expression statistics. Details of short RNA-seq
data for 6 samples sequenced after both 2 hours and 24 hours of infection with either Listeria
or Salmonella, as described in Supplementary Sections 1.2.3 and 1.3.10. Also included are
the log2 fold change estimates and p-values for differential expression of miRNAs after both
2 hours and 24 hours of infection, tested by DESeq2 as described in Supplementary Section
1.3.10.
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