Additional file One

Robust standard error estimation for generalized linear models

Let $\theta \in \mathbb{R}^p$ be a p x 1 parameter vector and f_i be a positive density function $y_i \sim, f_i(y_i|\theta)$. The data (y_i) are modeled as observed values of Y_i for i = 1,...,n and the likelihood function is given by

$$L(\theta) = \prod_{i=1}^{n} f_i(y_i|\theta),$$

and the log-likelihood function by

$$LL(\theta) = \sum_{i=1}^{n} \ln f_i(y_i|\theta).$$

First derivative (gradient) of the log-likelihood function

$$L'(\theta) = \sum_{i=1}^{n} g_i(y_i|\theta) = \sum_{i=1}^{n} \frac{\partial ln f_i(y_i|\theta)}{\partial \theta}.$$

Second derivative (hessian) of the log-likelihood function

$$L''(\theta) = \sum_{i=1}^{n} h_i(y_i|\theta) = \sum_{i=1}^{n} \frac{\partial^2 ln f_i(y_i|\theta)}{\partial \theta^2}.$$

Assuming that the model is correct, there is a true value θ_0 for θ . Then, we can use the Taylor approximation of second order for the log-likelihood function to estimate θ .

$$L(\theta) = L(\theta_0) + L'(\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^T L''(\theta_0)(\theta - \theta_0) + \dots$$

Therefore to derive the variance covariance matrix from the maximum likelihood estimation we can differentiate this expression to get

$$L'(\theta_0) + (\theta - \theta_0)^T L''(\theta_0) = 0.$$

So,
$$\hat{\theta} - \theta_0 = [-L''(\theta_0)]^{-1} L'(\theta_0)^T$$
,

$$Cov(\widehat{\theta}) = [-L''(\theta_0)]^{-1} [Cov(L'(\theta_0)][-L''(\theta_0)]^{-1}$$