SUPPLEMENTARY INFORMATION

Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay

Claire R. Armstrong and Alessandro Senes

Dept of Biochemistry University of Wisconsin-Madison 433 Babcock Dr. Madison WI 53706

senes@wisc.edu

Name	Sequence			
GpA	LIIFGVMAGVIGT			
GpA*	LIIFGVMAIVIGT			
PXDC2	LLLLLLGLLLGILLLVL			
F173B	LLLLLLFLLLGLLLGTL			
ANPRC	LLLLLLSALLGILLGAL			
EPHB6	LLLLLLSLLLGSLLGAL			
MUC13	LLLFQLLLTLLGTLLGIL			
TNR1B	LLLTGLLALLLGLLLGVL			
HFE	LLLTLLLGVLLGILLFVL			
SPTC3	LLLFTLLGYLLGTLLGYL			
STAB1	LLLVLLLGALLGLLLGAL			
MUC15	LLLGILLGALLGALLGVL			
ADCK4	LLLLLLANLLGLLLGLL			
ACV1B	LLLLLLVELLGILLGAL			
TNR12	LLLALLLTFLLGLLLGFL			
STX17	LLLAALLGGLLGFLLGKL			
ROMO1	LLLGFLLGCLLGMLLGAL			
VAS1	LLLFFLLGILLGLLLSLL			

Table S1 Test constructs used in this study

The inserts sequence were digested with Nhel and DpnII and ligated into the compatible Nhel-BamHI restriction sites of the pccKAN and pccGFPKAN, plasmids to produce the sequence "...NRAS-TM-ILIN..." The sequences are part of a library of previously studied TOXCAT constructs, which contain predicted helix-helix interfaces from human single-span transmembrane proteins [1], covering a range of CAT expression levels from approximately 25% to 175% relative to the CAT expression of the GpA standard.

Table S2 Divisome sequences used in this study

Bacterial Species	Uniprot code	TM Sequence	Bacterial Species	Uniprot code	TM Sequence
FtsB			FtsL		
Escherichia coli	P0A6S5	LTLLLAILVWLQYSLWF	Escherichia coli	P0AEN6	FGKLPLCLFICIILTAVTVVTTA
Yersinia pestis	Q1C479	LTLLLVLLGWLQYSLWL	Yersinia pestis	Q7CGA7	LILLVAVLISAVLVVTTA
Vibrio cholerae	Q9KUJ3	FALTLSLLLVWLLYTLMW	Vibrio cholerae	Q9KPG0	LLLLVLIFSCAMGVVFMT
Haemophilus influenzae	P44035	LILILLSVLVLFQYNFWF	Haemophilus influenzae	P45058	LVVLLLIGILVSAMGTIWIT
Legionella pneumophila	Q5WV01	IFIILIVALVALQHKLWL	Legionella pneumophila	Q5WXZ3	LYMLIVLLAAVLVSAFAVIY
Neisseria meningitidis	P64161	VTVVLSFALVCCQYSLWF	Neisseria meningitidis	Q7DDQ4	FLLLLAVCVSAFSVVM
Caulobacter crescentus	Q9A7J8	FLPTTAIFFLIFYFAFHAL	Caulobacter crescentus	Q9RQJ5	VVEVVGLCILLSLVTGVYLA
Rickettsia prowazekii	Q9ZDA9	IILNIFLALLLVYFIFHCIY	Rickettsia prowazekii	D5AXG5	FHYLILFITIIAICSLF
Bacillus subtilis	P37471	LTVFGALVFLTAIVLASSV	Bacillus subtilis	Q07867	VLLVLFAAAVLSVSLLIVS
Streptococcus pneumoniae	Q8CZD2	FMGGVLILIMLLFILPTFNLA	Streptococcus pneumoniae	Q8DR70	FYFSIAVTTLIVAISIIFM
Streptococcus pyogenes	Q9A203	FMGWILVSMMFLFILPTYNLV	Streptococcus pyogenes	Q99YK0	AFYTAIIVTAITMAVSIIYL
FtsQ			ZipA/ErzA		
Escherichia coli	P06136	ILFLLTVLTTVLVSGWVVLG	Escherichia coli	P77173	LILIIVGAIAIIALLVHGFWT
Yersinia pestis	Q7CGB1	VIFLLMVLGTILWGGWVVIGW	Yersinia pestis	P58492	LILIVVGAIAIIALLLHGLWT
Vibrio cholerae	Q9KPG9	FFLVVLLLIGGLLYSTISWMW	Vibrio cholerae	Q9KTD2	FVLIIVGALAIAALLFHGLWT
Haemophilus influenzae	P45067	FAVLLGVFFLLGVYFNWQSIL	Haemophilus influenzae	P44113	TILIIVGIVALVALIVHGLWS
Legionella pneumophila	Q5ZSA8	GLRYLTIMGLLILSALLLAGRLG	Legionella pneumophila	Q5ZSA0	SLILNVLLLIGVLVAIGRLM
Neisseria meningitidis	X5EU48	WLLVMMAMLLAASGLVWFY	Neisseria meningitidis	A0A0H5QES0	YIVLFLAAVLAVVAYNMY
Caulobacter crescentus	P0CAU8	VALSVAGAALGLGLVVMLATG	Caulobacter crescentus		
Rickettsia prowazekii	Q9ZDS5	ILVLKIVLMIFVCLFVFTKYF	Rickettsia prowazekii		
Bacillus subtilis	P16655	ISFIMLFFIMVLIIVYLQTPI	Bacillus subtilis	O34894	FVIGLLIVLLALFAAGYFF
Streptococcus pneumoniae	Q97RU7	FTILFPSLLLLFVSAYLLSP	Streptococcus pneumoniae	Q8DQE5	LMVAIAVILVLAYVVAIFL
Streptococcus pyogenes	Q1JG12	LPVLLGALLLMAVSIFMITPY	Streptococcus pyogenes	P0DA99	LIVAIVLLVIIAYLVGVII
Ftsi			FtsN		
Escherichia coli	P0AD68	FALLCGCILLALAFLLG	Escherichia coli	P29131	AMVAIAAAVLVTFIGGL
Yersinia pestis	A0A0E1NWU7	FALLCGCILLALVGLIM	Yersinia pestis	Q7CL21	TVMALAVALLVVFVGGL
Vibrio cholerae	A0A085PFW1	FYLLLFFVLTAFCALVA	Vibrio cholerae	A0A085TJQ3	GLVAIVLLAVFGYGLYLL
Haemophilus influenzae	P45059	YMLSTVLILLGLCALVA	Haemophilus influenzae	A0A0N1EX29	VLIFLALFIVLVFVVGLYLL
Legionella pneumophila	A0A130BGB2	LVTVAVFFSLILAVLIW	Legionella pneumophila	A0A0C9P799	LVVIVTFLFGYITASFL
Neisseria meningitidis	E0N6Q4	ISFVLMAIAVLFAGLIA	Neisseria meningitidis	X5F9A7	GLSGFFFGLILATVIIAGIL
Caulobacter crescentus	B8H0A0	LVMGFFGFCFVGVSLGAG	Caulobacter crescentus	B8GX61	LIISAVVLVTLVVAVVMIL
Rickettsia prowazekii			Rickettsia prowazekii	Q9ZE80	ICLVSLICISGIYFGYQYYQ
Bacillus subtilis	Q07868	GAAILSICFALFFFVILG	Bacillus subtilis		
Streptococcus pneumoniae	Q75Y83	LSLLSVFVFAIFLVNFAVIIG	Streptococcus pneumoniae		
Streptococcus pyogenes	Q1J5G0	MMLLTIFIFFIFIINFMIIIG	Streptococcus pyogenes		

The inserts sequence were digested with Nhel and DpnII and ligated into the compatible Nhel-BamHI restriction sites of the pccKAN and pccGFPKAN, plasmids to produce the sequence "...NRAS-TM-ILIN..." The bacterial sequences were selected as identified in the UniProt database [2] and their TM segments were selected as annotated in the TRANSMEM feature of their UniProt record.

Log Phase Cells Resuspended in PBS

Stationary Phase Cells Resuspended in PBS

Figure S1. Fluorescence emission scans and TOXGREEN signal calculation in different cell growth conditions. Fluorescence measurements of seven TOXGREEN constructs, including the "no-TM" control, as in Fig. 2. The dashed vertical line indicates the readout wavelength used (512 nm). a) Fluorescence spectra of cells in log phase measured directly in LB culture media. No fluorescent signal is apparent. b) Fluorescence spectra of the same log phase cells harvested by centrifugation and resuspended in the same volume of PBS buffer. c) Conversion of the log phase cell's fluorescence in PBS at 512 nm to TOXGREEN signal. d) Spectra of stationary phase cells, harvested by centrifugation and resuspended in the same volume of PBS buffer. Compared to the same cells in LB culture media (Fig. 2c) the background fluorescence (no-TM construct) is noticeably lower. e) Conversion of stationary phase cell's fluorescence to TOXGREEN signal.

Figure S2. Direct measurements in M9 minimal media in log and stationary phases. a) Fluorescence spectra of cells in log phase grown in M9 minimal media. b) Conversion of log phase cell's fluorescence at 512 nm to TOXGREEN signal. c) Spectra of stationary phase cells grown in M9 minimal media. d) Conversion of stationary phase cell's fluorescence to TOXGREEN signal. e) Comparison of fluorescence of log phase cells grown in M9 minimal media and log phase cells in resuspended in 1X PBS buffer after normalization to cell density. f) Comparison of relative TOXGREEN signal for log phase grown in M9 minimal and log phase cells in 1X PBS buffer. g) Comparison of fluorescence of stationary phase cells grown in M9 minimal media and stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells grown in M9 minimal media and stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells grown in M9 minimal media and stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells in LB after normalization to cell density. h) Comparison of relative TOXGREEN signal for stationary phase cells in LB.

Figure S3. TOXGREEN and TOXCAT are in excellent agreement. Histogram representation of the data reported as XY plot in Fig. 3. Comparison of reporter gene expression between TOXCAT (measured as CAT enzymatic activity in Iysates) and TOXGREEN (measured as fluorescence intensity whole cells in stationary phase). The values have been normalized to their respective value of the GpA sample (100%). The expression level of the TOXGREEN and TOXCAT chimeric constructs was assessed by immunoblotting using anti-MBP antibodies (bands displayed under the histogram). Constructs containing the same transmembrane sequence have a similar level of expression in the two assays.

Figure S4. Western blots of log and stationary phase cell cultures (Fig. 2) and of multi-day variability tests (Fig. 4). Immunoblotting using anti-MBP antibodies to control for the expression level of the chimeras for the seven constructs used for TOXGREEN testing. a) Immunoblots of log phase cells concentrated in 3× PBS. b) Immunoblots of stationary phase cells in LB. c) Immunoblots of stationary phase cells in LB. taken over 5 days.

References

- B.K. Mueller, S.M. Anderson, S. Subramaniam, E. Lange, A. Senes, in preparation (2016).
- [1] [2] UniProt Consortium, UniProt: a hub for protein information, Nucleic Acids Res., 43 (2015) D204-212.