Analysis of microRNA and Gene Expression Profiles in Multiple Sclerosis: Integrating Interaction Data to Uncover Regulatory Mechanisms

Sherry Freiesleben^{1,2}, Michael Hecker³, Uwe Klaus Zettl³, Georg Fuellen^{2,4}, Leila Taher^{2,5,*}

¹ Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.

² Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany.

³ Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany.

⁴ Interdisciplinary Faculty, University of Rostock, Rostock, Germany.

⁵ Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.

* Corresponding authors: E-mail: leila.taher@fau.de

Supplementary Tables and Figures

Contents

Supplementary Figure 1
Supplementary Figure 2 4
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6
Supplementary Figure 7
Supplementary Figure 8
Supplementary Figure 9 11
Supplementary Figure 10 12
Supplementary Figure 11
Supplementary Figure 12 14
Supplementary Figure 13 15
Supplementary Figure 14 16
Supplementary Figure 15 17
Supplementary Table 1
Supplementary Table 2
Supplementary Table 3
Supplementary Table 4
Supplementary Table 5
References

Supplementary Figure 1: Venn diagram of overlapping differentially expressed microRNAs. This figure depicts the overlap of the differentially expressed microRNAs (miRNAs) with a p-value<0.05 between the different miRNA microarray datasets. The direction in which the miRNAs were regulated was not taken into consideration to construct this Venn diagram.

Supplementary Figure 2: Subnetwork created from GO:0048534: Hemopoietic or lymphoid organ

development. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 3: Subnetwork created from GO:0002520: Immune system development. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 4: Subnetwork created from GO:0006954: Inflammatory response. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 5: Subnetwork created from GO:0045321: Leukocyte activation. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 6: Subnetwork created from GO:0002521: Leukocyte differentiation. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 7: Subnetwork created from GO:0030099: Myeloid cell differentiation. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 8: Subnetwork created from GO:0048666: Neuron development. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 9: Subnetwork created from GO:0030182: Neuron differentiation. The nodes

contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 10: Subnetwork created from GO:0031175: Neuron projection development. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 11: Subnetwork created from GO:0050769: Positive regulation of neurogenesis. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are white are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 12: Subnetwork created from GO:0048169: Regulation of long-term neuronal synaptic plasticity. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are white are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See Figure 3 for the complete miRNA-based network.

Supplementary Figure 13: Subnetwork created from GO:0002237: Response to molecule of bacterial origin. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are white are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See **Figure 3** for the complete miRNA-based network.

Supplementary Figure 14: Subnetwork created from either GO:0002218: Activation of innate immune response, from GO:0002758: Innate immune response- activating signal transduction, or from GO:0002224: Toll-like receptor signaling pathway. These three GO terms are associated to the same enriched nodes: TLR2, TLR4, and IRAK1. The nodes contributing to this enriched GO term are depicted in the dashed box. The microRNAs (miRNAs) associated to these enriched nodes are depicted in yellow on the left hand side of the diagram and the remaining genes associated to the enriched nodes have been circularly arranged on the right hand side. All edges (activating edges in green and repressing ones in red) that were present in the original miRNA-based network between the currently depicted nodes are also present in this subnetwork. The nodes in blue represent transcription factors present in the original miRNA-based network. The greater the size of the node is, the greater the degree of the node is in the original miRNA-based network. The nodes that are nodes that are neither miRNAs nor transcription factors in the original miRNA-based network. See Figure 3 for the complete miRNAbased network.

Supplementary Figure 15: Venn diagram of overlapping differentially expressed protein-coding genes with a p-value<0.05 per dataset. This figure depicts the overlap of the differentially expressed genes with a p-value<0.05 between the different. The direction in which the genes were regulated was not taken into consideration to construct this Venn diagram.

miRNA	Target	miRNA	Target
let-7h-5n	CCND1	miR-125a-5n	NTRK3
let-7b-5p	CDC34	miR-125a-5p	TNFAIP3
let-7b-5p	HRAS	miR-125a-5p	TP53
let-7b-5p	IGF2BP1	miR-125a-5p	VEGEA
let-7b-5p	LIN28A	miR-146a-5p	EGFR
let-7b-5p	MTPN	miR-146a-5p	IRAK1
let-7g-5p	FN1	miR-146a-5p	SMAD4
let-7g-5p	GAB2	miR-146a-5p	TLR4
let-7g-5p	HMGA2	miR-221-3p	BNIP3L
let-7g-5p	IGF2BP1	miR-221-3p	CDKN1B
let-7g-5p	IL13	miR-221-3p	CDKN1C
miR-19b-3p	CUL5	miR-221-3p	CREBZF
miR-19b-3p	MYCN	miR-221-3p	DDIT4
miR-20b-5p	CDKN1A	miR-221-3p	DICER1
miR-20b-5p	EFNB2	miR-221-3p	DIRAS3
miR-20b-5p	EPHB4	miR-221-3p	DKK2
miR-30a-5p	BECN1	miR-221-3p	ETS1
miR-30a-5p	DTL	miR-221-3p	KIT
miR-30a-5p	RUNX2	miR-221-3p	MYBL1
miR-30a-5p	SMAD1	miR-221-3p	PSMD9
miR-125a-5p	ARID3B	miR-221-3p	PTEN
miR-125a-5p	BAK1	miR-221-3p	TBK1
miR-125a-5p	CD34	miR-221-3p	TIMP3
miR-125a-5p	CDKN1A	miR-221-3p	ZEB2
miR-125a-5p	ELAVL1	miR-328	ABCG2
miR-125a-5p	ERBB2	miR-328	BACE1
miR-125a-5p	ERBB3	miR-328	CD44
miR-125a-5p	KLF13	miR-328	H2AFX
miR-125a-5p	LIN28A	miR-328	PTPRJ

Supplementary Table 1: Validated microRNA-target pairs that were included in the microRNA-based

network. The validated microRNA-target pairs were found using miRTarBase, Release 3.5, and TarBase, Release 6.0, for the microRNA-based network^{1,2}. The target pairs were found using the 18 miRNAs that were differentially expressed and dysregulated in the same direction in at least 3 of the 4 microRNA microarray datasets (see **Tables 1** and **2**).

miR-125a-5pENPEPmiR-300ANO4miR-300DCAF12miR-300LCORLmiR-300LRRC4miR-300NR5A2miR-300PAN3	miR-300 miR-300 miR-450b-5p miR-450b-5p miR-450b-5p miR-450b-5p miR-450b-5p	TRIM63 VASH2 ATP11C CDC42EP3 ELAVL4 PTPRZ1 SMC1A	miR-450b-5p miR-450b-5p miR-580 miR-580 miR-1206 miR-1206	SOX2 UBR1 ZBTB10 CISD1 FGF7 EBF3 SOX6

Supplementary Table 2: Predicted miRNA-target pairs that were included in the miRNA-based network. The

predicted miRNA-target pairs were found using TargetScan, Release 6.2, miRDB, Release 4.0, and microT-CDS,

Release 5.0^{3-5} . The target pairs were found using the 18 miRNAs that were differentially expressed and dysregulated

in the same direction in at least 3 of the 4 microRNA microarray datasets (see Tables 1 and 2).

TF	miRNA	TF	miRNA	
E2F6	miR-19b-3p	SP1	miR-19b-3p	
EGR4	miR-125a-5p	SP1	miR-30a-5p	
GABPA	miR-328	SP3	let-7g-5p	
KLF15	miR-19b-3p	SP3	miR-19b-3p	
KLF15	miR-20b-5p	SP3	miR-125a-5p	
MAZ	miR-125a-5p	SP4	let-7g-5p	
MAZ	let-7b-5p	SP4	miR-125a-5p	
MAZ	miR-19b-3p	SP4	let-7b-5p	
PLAG1	miR-125a-5p	SP4	miR-19b-3p	
PURA	miR-125a-5p	SP4	miR-30a-5p	
RREB1	miR-125a-5p	TEF	miR-221-3p	
SP1	let-7g-5p	ZFX	let-7b-5p	
SP1	miR-125a-5p		1	

Supplementary Table 3: Predicted transcription factor and miRNA interaction pairs found using FIMO⁶ in **combination with HOCOMOCO**⁷. FIMO⁶ and HOCOMOCO⁷ were used in order to find predicted miRNA targets of the transcription factors (TFs) in HOCOMOCO⁷. The target pairs were found using the 18 miRNAs that were differentially expressed and dysregulated in the same direction in at least 3 of the 4 microRNA microarray datasets (see **Tables 1 and 2**).

TF	Gene	TF	Gene	TF	Gene
ARNT2	ABCG2	PURA	ERBB2	SP3	EPHB4
CTCF	CUL5	PURA	FN1	SP3	ERBB2
CTCF	TNFAIP3	PURA	HRAS	SP3	ESR1
E2F4	SRSF1	PURA	LCORL	SP3	ETS1
E2F6	ETS1	PURA	LIN28A	SP3	FN1
E2F6	FN1	PURA	LRRC4	SP3	GAB2
EGR1	ARID3B	RFX1	VEGFA	SP3	HRAS
EGR1	CCND1	RREB1	DCAF12	SP3	KIT
EGR1	CDKN1C	RREB1	LIN28A	SP3	KLF13
EGR1	DICER1	RREB1	TP53	SP3	LIN28A
EGR1	HRAS	RXRA	CREBZF	SP3	LRRC4
EGR1	TBK1	SP1	ARID3B	SP3	MYBL1
EGR4	EBF3	SP1	CCND1	SP3	NTRK3
ELK3	NR5A2	SP1	CD44	SP3	PTEN
EPAS1	CDKN1C	SP1	CDC34	SP3	PTPRI
FOS	LIN28A	SP1	CDKN1C	SP3	PTPRZ1
FOX01	CDKN1A	SP1	CISD1	SP3	SMC1A
FOX01	U 13	SP1	FPHR4	SP3	SOX2
IRE3	DICER1	SP1	EPRB2	SP3	TBK1
IRE4	ETS1	SP1	ERBB3	SP3	TNFAIP3
IRE8	TIR4	SP1	EKDD5 ESR1	SP3	VEGEA
KI F15	CDKN1C	SP1	ESKI ETSI	SP3	7BTB10
KLF15 VIE15	DCAE12	SD1	EISI ENI	SD 3	7ED1
KLF15 VIE15	ECED	SP 1 SP 1	GAR2	SI 3 SP4	
KLF15 VIE15	LOI K VIT	SD1		SD4	RACE1
KLF15 VIE15	KII VIE12	SI I SD1	ICE2DD1	SI 4 SD4	CCND1
KLFIJ VIE15	KLFIJ ZDTD10	SF I SD1	IUF2DF1 VIT	5F4 SD4	CDC34
KLF15 VIE15		SI I SD1	KII VIE12	SI 4 SD4	CDC34 CDC42ED2
KLF13 MA7	ZEDZ	SF I SD1		5F4 SD4	CDC42EF5
MAZ	CDC42EP3	SP 1 SD 1	LINZOA	5P4 5D4	CDKNID
MAZ		SF I SD1	LKKC4 NTDV2	5F4 SD4	CISD1
MAZ	NII VLE12	SP I SD 1	IN I KKS DTEN	SP4 SD4	DCAE12
MAZ	KLF13 LCODI	SP1	PIEN	SP4 SD4	DCAF12 DICED1
MAZ	LCOKL	SPI	PTPKJ DTDD 71	SP4	DICERI
MAZ	LIN28A	SPI	PIPKZI	SP4	EBF3
MAZ	LKKC4	SPI	SMAD4	SP4	EFNB2
MAZ	NIKK3	SPI	SUX2	SP4	EGFK
MAZ	PAN3	SPI	IBKI	SP4	
MAZ	SOX2	SPI	TNFAIP3	SP4	EPHB4
MAZ	ZEB2	SPI	VEGFA	SP4	ERBB2
NRFI	BNIP3L	SP2	FNI	SP4	ESRI
NRFI	CDC34	SP2	PTEN	SP4	EISI
NRFI	MTPN	SP3	ARID3B	SP4	FNI
PAX5	TNFAIP3	SP3	BACE1	SP4	GAB2
PAX8	TNFAIP3	SP3	CCND1	SP4	HRAS
PLAG1	ABCG2	SP3	CDC34	SP4	IRAK1
PPARD	CDC34	SP3	CDC42EP3	SP4	KIT
PRDM1	ATP11C	SP3	CDKN1C	SP4	KLF13
PURA	BACE1	SP3	CISD1	SP4	LIN28A
PURA	CCND1	SP3	EBF3	SP4	LRRC4
PURA	CD34	SP3	EFNB2	SP4	MYCN
PURA	CDC42EP3	SP3	ELAVL1	SP4	NR5A2

SP4	NTRK3	TBX2	CDKN1A	WT1	PTPRJ
SP4	PAN3	TBX2	SMC1A	WT1	PTPRZ1
SP4	PTEN	TBX2	TRIM63	WT1	TBK1
SP4	PTPRJ	TFCP2	ERBB3	ZFX	ARID3B
SP4	RUNX2	TP53	CDKN1A	ZFX	DICER1
SP4	SMAD1	WT1	ARID3B	ZFX	EBF3
SP4	SOX2	WT1	CCND1	ZFX	ELAVL1
SP4	TBK1	WT1	CISD1	ZFX	HRAS
SP4	TNFAIP3	WT1	EGFR	ZFX	SOX2
SP4	VEGFA	WT1	HRAS	ZFX	TBK1
SP4	ZBTB10	WT1	IRAK1	ZFX	TNFAIP3
SP4	ZEB2	WT1	KLF13		
STAT4	MYCN	WT1	MYCN		

Supplementary Table 4: Predicted transcription factor and gene interaction pairs found using FIMO⁶ in

combination with HOCOMOCO⁷. FIMO⁶ and HOCOMOCO⁷ were used in order to find predicted targets of the

transcription factors (TFs) in HOCOMOCO⁷ for the microRNA-based network.

AAMP	DDOST	MED9	RAP2B
ABHD15	DDX50	MESDC1	RBBP6
ADRB2	DEDD2	METTL5	REPS1
AKT3	DUSP12	MFAP1	RGS9
ALG2	DYNLL2	MIP	RGS9BP
ARAP1	EIF2AK2	MIPEP	RRAD
BEX1	EIF3M	MRPL1	SIGLEC17P
BEX2	EIF4A2	MRPL27	SLC25A21
BLCAP	EIF4EBP2	MRPL41	SLC39A14
BRIX1	EIF4G1	MRPS27	SNRPA1
BUB1	ELF4	NAA30	SOAT1
C19orf43	ELMO2	NCOA6	SRP72
CA5B	EMC1	NCOR1	SRPRB
CAMK2N1	ERCC4	NDC80	SWT1
CASC3	EXT2	NLRP3	TBC1D20
CASP9	EXT3	NOP58	TES
CCDC59	F8A1	NSMCE4A	TMEM107
CD244	FAM122A	ODC1	TNPO1
CD69	GALNT6	ORC3	TOP2A
CDK2AP2	GIGYF2	PALLD	TOR1AIP1
CERS6	GPBP1	PAPOLG	TSEN34
CHSY1	HNRNPH3	PLEKHF1	TUBB
CLIC3	HSPA1A	PMAIP1	UBE2G1
CORO1A	ICAM3	POLDIP3	UPF1
CRBN	IFNAR1	PPP1CA	UXT
CSTF2T	IFT74	PPP1R18	VKORC1L1
CTDSP2	KRR1	PPWD1	VPS37C
CXCR3	LARP7	PRDX5	VRK1
DCAF4	LPCAT1	RAB21	YWHAG
DCAF7	MAFIP	RAB5B	ZBTB34
DCTN6	MAPK1	RAC1	ZNF264
DDIT3	MATR3	RAD1	ZNF777

Supplementary Table 5: Differentially expressed genes. 128 genes that were differentially expressed in at least 3

of the 4 protein-coding microarrays and that were regulated in the same direction (Table 1). Genes in bold represent

genes that were differentially expressed and regulated in the same direction in all four protein-coding microarray

datasets.

References

- Hsu, S.-D. *et al.* miRTarBase: a database curates experimentally validated microRNA-target interactions. *Nucleic Acids Res.* 39, D163–D169 (2011).
- 2. Vergoulis, T. *et al.* TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. *Nucleic Acids Res.* **40**, D222–D229 (2012).
- Grimson, A. *et al.* MicroRNA targeting specificity in mammals: determinants beyond seed pairing. *Mol. Cell* 27, 91–105 (2007)
- Wang, X. & El Naqa, I. M. Prediction of both conserved and nonconserved microRNA targets in animals. *Bioinformatics* 24, 325–332 (2008).
- 5. Paraskevopoulou, M. D. *et al.* DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. *Nucleic Acids Res.* **41**, W169–W173 (2013).
- Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. *Bioinformatics* 27, 1017–1018 (2011).
- Kulakovskiy, I. V *et al.* HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. *Nucleic Acids Res.* 41, D195–D202 (2013).